STW Water Process & Technologies A Subsidiary of STW Resources Holding

"A Water Solutions Company"

OTCQB: STWS

STW Water Process & Technologies "REVERSE OSMOSIS SYSTEM"

DESALINATION WITH HIGH BRACKISH HIGH RECOVERY HYBRID REVERSE OSMOSIS SYSTEM

In conjunction with STW's R&D/Strategic Manufacturing Partner

STW Water Process & Technologies "Environmentally Green Technologies"

STW provides industry leading patented technology with Strategic Manufacturing Partner:

 REVERSE OSMOSIS DESALINATION: Brackish water, High brackish water or Seawater or Geothermal Water: STW's "Desalinator" system, combined with a Hybrid high brackish high recovery or Seawater Reverse Osmosis System or the water from geothermal operations, will have no environmentally sensitive concentrated brine reject discharged into the local waterways.

Hybrid Membrane Configurations

High Rejection, Higher Pressure Membranes in the First Stage Lower Pressure Membranes in the Second Stage

Interstage Booster Pump

Pressure Booster Pump is Installed between 1st and 2nd Stages Non-Electric Turbo Charger Can Sometimes Be Utilized

• Energy Recovery Device

Utilizes the Energy From the Reject to Boost Pressure to the Membrane Feed

STW Water Process & Technologies "REVERSE OSMOSIS SYSTEM"

Hybrid high recovery high brackish Reverse Osmosis System Design Considerations

Advantages

- Evens out Flux Rates Between 1st and 2nd Stages
- Saves Energy
- Better Quality Permeate
- Better Overall Efficiency

STW Water Process & Technologies "PICTURES OF DESALINATION SYSTEMS FROM ALAN MURPHY'S PAST WORK EXPERIENCE"

STW Water Process & Technologies "PICTURES OF DESALINATION SYSTEMS"

Municipal RO Plant in West Texas - OPEX DATA

OPEX FOR YEAR 2009-2014 - EXISTING MUNICIPAL RO PLANT IN WEST TEXAS - BASED ON EDWARDS TRINITY WATER AT 1300-1600 PPM OF TDS											
						`					
	HISTORICAL USAGE PER YEAR						HISTORICAL OPEX				
							1	1 Acre-foot =325,851 Gallons (US)			
				PLANT ON HILL	WELL FIELD		1			OPERATING COST	
	PLANT CONSUMABLES USAGE PER YEAR			ENERGY	ENERGY	LABOR USAGE PER YEAR	GROSS TOTAL COST EACH YR.	TOTAL BLENDED FINISHED WATER			
YEAR	CHEMICALS	FILTERS	FREIGHT	Usage/year	Usage/year	Usage/year	Total Cost/year	Gallons/year	Acre- foot/year	COST Per 1000 Gallons	COST Per Acre-foot
2009	\$64,344	\$5,675	\$5,535	\$49,458	\$120,551	\$206,754	\$452,316	1,089,247,997	3,342.78	0.415	135.31
2010	\$66,152	\$11,543	\$4,184	\$72,942	\$113,647	\$232,318	\$500,785	1,037,087,593	3,182.70	0.483	157.35
2011	\$94,680	\$9,580	\$7,935	\$105,000	\$172,189	\$176,170	\$565,555	1,511,852,453	4,639.70	0.374	121.89
2012	\$67,832	\$14,045	\$5,888	\$120,382	\$122,745	\$158,009	\$488,901	1,000,000,000	3,068.89	0.489	159.31
2013	\$60,896	\$19,130	\$7,722	\$149,804	\$234,158	\$174,529	\$646,239	1,238,766,485	3,801.63	0.522	169.99
2014	\$97,700	\$3,606	\$8,068	\$177,148	\$258,705	\$198,208	\$743,434	1,166,148,465	3,578.78	0.638	207.73
Average Cost /year	\$75,267	\$10,596	\$6,555	\$112,456	\$170,332	\$190,998	\$566,205	1,159,547,011	3,558.52	0.488	159.11
NOTE: Above data is being used with Permission of City of Manager at Municipal Plant											
	CHEMICALS	FILTERS	FREIGHT	R A 1MGD, 10MGD, 30 N Usage/year	Usage/year	BASED ON AVERAG	Total Cost/year	r Gallons/year	Acre- foot/year	COST Per 1000 Gallons	COST Per Acre-foot
Average cost/day 3.2 MGD	\$206	\$29	\$18	\$308	\$467	\$523	\$1,551	3,176,841	9.75	0.488	159.11
1 MGD Finished water	\$65	\$9	\$6	\$97	\$147	\$165	\$488	1,000,000	3.07	0.488	159.15
10 MGD Finished water	\$649	\$91	\$57	\$970	\$1,469	\$1,648	\$4,884	10,000,000	30.69	0.488	159.15
30 MGD Finished water	\$1,948	\$274	\$170	\$2,910	\$4,408	\$4,943	\$14,653	30,000,000	92.07	0.488	159.15
50 MGD Finished water	\$3,246	\$457	\$283	\$4,850	\$7,347	\$8,238	\$24,421	50,000,000	153.44	0.488	159.15

Please note: Above Data is provided with permission of City Manager at Water Plant

DESALINATOR SYSTEM A ZERO LIQUID DISCHARGE TECHNOLOGY WITH ADVANCED FLASH DISTILLATION PROCESSES

In conjunction with STW's R&D/Strategic Manufacturing Partner

STW Water Process & Technology

STW "Desalinator" Advantages over conventional methods

A Subsidiary of STW Resources Holding Corp

STW provides industry leading patented technology with Strategic Manufacturing Partner:

- ZERO LIQUID DISCHARGE SYSTEM: STW's "Desalinator" systems, an advanced flash distillation processes with Zero Liquid Discharge capable of recovering 95%+ of the fresh water from high brine concentrate.
- MSE-Multi stage evaporators
 - Produce distillate less than 500ppm depending on source
 - Max TDS 250-350.000ppm
 - Power source: Natural gas and Electricity
- MVR(Mechanical Vapor recompression)
 - Produce distillate less than 500ppm
 - Max TDS 250-350.000ppm
 - Power source: Electricity
 - Higher in CAPEX than MSE caused by compressor system
- FSD(Flash Spray drying)
 - Liquid to dry solids in one step.
 - Max TDS: 800.000ppm depending on feed. Must be able to be pumped
 - Power source: Natural gas and Electricity
 - Low risk of scaling caused by creating crystals in cloud.
 - CAPEX is less than MVR.

STW Water Process & Technology

STW "Desalinator" Advantages over conventional methods

A Subsidiary of STW Resources Holding Corp

STW Desalinator applicable for all kinds of highly concentrated fluids

- Removes Total Dissolved Solids (TDS)
 Removes Hardness
- Removes TSS
- Removes Volatiles
- Disinfection technology
- STW Desalinator is a modular system
- STW Desalinator uses <u>no chemicals</u>,
- STW Desalinator uses **no membranes**
- STW Desalinator requires no pretreatment depending on feed water quality
- STW Desalinator requires little operator attention
- STW Desalinator has very high energy efficiency
- STW Desalinator is insensitive to scaling or fouling
- STW Desalinator is designed for continuous operation

STW Water Process & Technologies

STW "Desalinator" Systems

A Subsidiary of STW Resources Holding Corp

"Desalinator"

*basics for this diagram are based on information from another project

Flash Spray Drying

Evaporation process chambers

PLEASE NOTE THAT ABOVE EVAPORATION CHAMBER IS NOT PART OF STW'S SALES OR PURCHASE. IT IS SHOWN HERE FOR VISUAL REFERENCES ONLY. PICTURES ARE TAKEN FROM A WEST TEXAS MUNICIPAL APPLICATION OF SALTTECH'S DYVAR TECHNOLOGY PURCHASED DIRECLTY BY THE TOWN OF MENTONE IN CONJUNCTION WITH BURGESS & NIPLE, INC. STW'S "DESALI NATOR" SYSTEM WILL BE A SIMILAR PROCESS BUT <u>DIFFERENT</u> WITH ADVANCED FLASH DISTILLATION PROCESSES DESIGNED TO BE A SOPHISCATED COST EFFECTIVE SOLUTION FOR OUR CUSTOMERS.

Crystallizer

STW Water Process & Technologies

A Subsidiary of STW Resources Holding Corp

QUESTIONS?