# **RECLANATION** Managing Water in the West

Qualitative Comparison of Reverse Osmosis and Nanofiltration for Treating Brackish Groundwater in Texas

ANNA HOAG, KATIE GUERRA, ANDREW TIFFENBACH



U.S. Department of the Interior Bureau of Reclamation

## **Collaborative Effort**

- Common agency objective: Increase the use of nontraditional water
- Three projects conducted in partnership with TWDB
  - Comparing NF and RO for Desalination in Texas
  - Estimating the Cost of Brackish Groundwater Desalination in Texas
  - Evaluate costs of RO cleaning





## NF vs RO Project

- TWDB observation: Extensive use of RO membranes in Texas desalination plants
- Questions:
  - Can NF be used instead of RO?
  - Can NF meet finished water quality target?
  - Is NF more cost effective compared to RO?



## **Desalination in Texas**

- > 46 municipal water desalination facilities
- Total desalination capacity = 123 MGD
  - 73 MGD brackish groundwater
  - 50 MGD brackish surface water
- 90% of desalination plants in TX use reverse osmosis

#### **Desalination Plant Capacities**



## **Membrane Desalination**

- Most widely used desalination process in the US
- Many different types of membranes
- RO membranes produce higher quality permeate
- NF membranes
  - High rejection of di-valent ions
  - Moderate to low rejection of mono-valent ions
  - Lower operating pressure







## Cost of RO Desalination



Source: http://arizonaenergy.org/News\_10/News\_Jan10/

## **Project Overview**



## Water Quality Assessment: Texas Groundwater Database

- Created and maintained by Texas Water Development Board
- Used to generate sample set for study
- Over 100,000 entries
- Major ion analysis provided



## **Groundwater Database Analysis**



Majority of samples in database exhibit the following characteristics:

- NaCl is dominant salt
- Higher TDS samples have more NaCl
- Lower TDS have more divalent ions

## Water Quality Used for Analysis



## NF and RO Membrane Characteristics

|             |      | Active                  | Salt rejection (%) |                   |                   | Pressure normalized      |
|-------------|------|-------------------------|--------------------|-------------------|-------------------|--------------------------|
| Membrane    | Туре | Area (ft <sup>2</sup> ) | NaCl               | MgSO <sub>4</sub> | CaCl <sub>2</sub> | productivity (gpd)/(psi) |
| ESNA1-LF2   | NF   | 320                     | 77                 | NP                | NP                | 111                      |
| NF90        | NF   | 400                     | 85-95              | > 97              | NP                | 107                      |
| ESNA1-LF-LD | NF   | 320                     | NP                 | NP                | 89                | 109                      |
| XLE         | RO   | 440                     | 99                 | NP                | NP                | 112                      |
| ESPA1       | RO   | 320                     | 99.3               | NP                | NP                | 80                       |
| XFR LE      | RO   | 400                     | 99.4               | NP                | NP                | 77                       |
| BW30        | RO   | 365                     | 99.5               | NP                | NP                | 42                       |

NP = Data not provided on manufacturer specification sheet

## Membrane System Simulations



| Software Modelling Inputs       | Value                                          |  |  |
|---------------------------------|------------------------------------------------|--|--|
| Delivered water flow rate (gpm) | 200                                            |  |  |
| Delivered water TDS (mg/L)      | 500                                            |  |  |
| Water Quality                   | 12 different samples                           |  |  |
| Membrane system design          | Best engineering judgement, no design warnings |  |  |
|                                 | DECT A MATTON                                  |  |  |

A

## Permeate TDS Comparison



Waters with [Na] < 1,100 mg/L treatable with NF

# The majority of wells in the database can be treated to less than 500 mg/L TDS with NF



## Design Comparison



- Software outputs: C<sub>p</sub>, operating pressure
- Used mass balances to solve for Q<sub>b</sub>, Q<sub>s</sub>, Q<sub>c</sub>, Q<sub>f</sub>
- Conducted mass balance design and cost comparison for a sample with TDS 2200 mg/L
- Assumption: blending not limited by feed water quality

## **Design Comparison Results**



|                                                  | BW30   | NF90   | % Diff |
|--------------------------------------------------|--------|--------|--------|
| Permeate concentration, C <sub>p</sub> (mg/L)    | 47     | 325    | 591%   |
| Permeate flow rate, Q <sub>p</sub> (L/s)         | 10     | 11.4   | 14%    |
| Membrane feed flow rate, Q <sub>f</sub> (L/s)    | 11.7   | 13.5   | 15%    |
| Blend flow rate, Q <sub>b</sub> (L/s)            | 2.6    | 1.2    | -54%   |
| Raw water flow rate, Q <sub>s</sub> (L/s)        | 14.3   | 14.7   | 3%     |
| Concentrate flow rate, Q <sub>c</sub> (L/s)      | 1.8    | 2.0    | 11%    |
| Concentrate concentration, C <sub>c</sub> (mg/L) | 14,411 | 12,231 | -15%   |
| Feed pressure (psi)                              | 150    | 124    | -17%   |

## **Project Specific Considerations**

| RO | Consideration                                 | NF |
|----|-----------------------------------------------|----|
|    | Lower energy                                  | 1  |
|    | Lower chemical<br>demand/scaling<br>potential | ~  |
| 1  | Lower capital cost                            |    |
| 1  | Lower raw water demand                        |    |
| 1  | Smaller concentrate volume                    |    |
|    | Lower salinity concentrate                    | ~  |

## Conclusions

- Software simulations showed that permeate TDS correlated with feed sodium concentration
- NF possible for feed waters with Na < 1,100 mg/L</li>
- NF can be used to treat the majority of waters in the database to < 500 mg/L</li>
- Detailed engineering analysis needed to determine most cost effective membrane design

## Acknowledgements

Jorge Arroyo, Saqib Shirazi

Texas Water Development Board: Erika Mancha

Reclamation's Oklahoma-Texas Area Office: Collins Balcombe

Reclamation's Technical Service Center: Katharine Dahm, Valerie Batista-Garcia

Speaker Contact Information Katie Guerra, kguerra@usbr.gov, 303.445.2013