

# Challenges in Deep Exploration and Brackish Groundwater Development

## Brown County Water Improvement District No. 1 – Exploration Well

Andrew Donnelly, P.G. Daniel B. Stephens & Associates, Inc.

> *William Gamblin, P.E.* Apex Geoscience, Inc.



Daniel B. Stephens & Associates, Inc.

# Brown County Water Improvement District #1

- Water supplier for most of Brown County and some of Coleman County
  - City of Brownwood, City of Bangs,
    Brookesmith Special Utility District, soon to
    add City of Early and Zephyr
- Lake Brownwood is sole source
- Water supply issues due to drought
- Diversification





### Lake Brownwood Water Levels



Daniel B. Stephens & Associates, Inc.

# Brown County Brackish-Water Project Study

- Prepared by Bureau of Economic Geology—
  J.P. Nicot, Allan Standen, et al.
  - Broad study of available groundwater in Brown County
  - Focused on the Hickory Formation and the Ellenburger
    Formation as the most promising sources for
    groundwater in Brown County
  - Two recommended options for exploration wells







## Ellenburger Exploratory Well

- BCWID#1 chose to go with suggested Option #2
- Land available close to existing treatment plant
- Information on a nearby well
- Designated as Ellenburger/Hickory Exploration Well Ell-1



#### Ellenburger Exploratory Well

- Total depth expected to be around 3,600 feet to the bottom of the Hickory Formation
- Upper aquifers and potential oil and gas-bearing formations to be cased off
- Open hole in Ellenburger (and temporarily down to bottom of Hickory)



#### Ellenburger Exploratory Well

- Potential flow rate of up to 500 gpm
- Hot Wells well reportedly flowed at around 730 gpm in the 1920s
- Artesian conditions expected
- Local oil and gas drillers warned of potential high pressures in targeted formations



# Brown County Water Improvement District No. 1

## Exploration Well Ell-1 Design and Installation





# Well Design

### **Exploratory Well Design**

- Bids were solicited and received in May 2013
  - Stewart Brothers Drilling, Boart Longyear, and Layne Christensen Company
- Bids ranged in price from \$700K to over \$1.8 Million
- Stewart Brothers was awarded contract in June 2013 and mobilized to the site in late June and early July
- Drilling operations began the first week of July 2013



- Surface casing installation
  - 13<sup>3</sup>/<sub>8</sub>" steel
  - Installed to 185' below ground surface (bgs)
  - BOPD installed on surface casing











- Main casing installation
  - $-12\frac{1}{4}$ " borehole
  - 7<sup>₅</sup>%″ steel
  - Installed into the top of the Ellenburger Formation at 1,735' bgs
  - BOPD Installed on main casing



- During borehole drilling
  - Cuttings samples were collected every 10 feet
  - Plumbness and alignment
  - Geophysical logging
    - Gamma, normal resistivity, fluid resisitivity, spontaneous potential, temperature, neutron, sonic, caliper, and deviation logs





Daniel B. Stephens & Associates, Inc.

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

- Open borehole geology
  - Ellenburger LS and Dolomite, 1,706'-2,936' bgs (1,230 ft thick)
  - San Saba LS (interbedded LS and shale),
    2,936'-3,134' bgs
  - Welge Sandstone, 3,134'-3,206' bgs
  - Hickory Sandstone, 3,206'-3,556' bgs (350 ft thick)
    - Five major units identified

![](_page_19_Picture_7.jpeg)

### **Development and Water Sampling**

- Packer testing in Hickory Formation
  - Set inflatable packer at top of Hickory Formation
  - Isolated Hickory Formation was developed (air lifting) and a representative sample collected
  - Total dissolved solids (TDS) of Hickory = 78,200 ppm (seawater is ~35,000 ppm)
  - Radium 226 = 2,000+ pCi/L (EPA MCL = 5)

![](_page_20_Picture_6.jpeg)

![](_page_21_Picture_0.jpeg)

# Inflatable Packer

![](_page_21_Picture_2.jpeg)

# **Grout Plugging Lower Borehole**

- Well design called for bottom of borehole to be sealed off to complete well in Ellenburger Formation
  - First Grout Plug up to 3,385' bgs (Target was 2,900)
  - Second Grout Plug up to 2,995' bgs
  - Third Grout Plug up to 2,865' bgs (Isolated Ellenburger)
    - Pump test and analytical collected
  - Fourth Grout Plug up to 2,648' bgs
    - Pump test and analytical collected

![](_page_22_Picture_8.jpeg)

### **Development and Water Sampling**

- Ellenburger Formation
  - Airlifting and pumping development
  - Bottom Seal at 2,865' bgs
    - TDS = 22,200 mg/L
    - Gross Alpha ~200 pCi/L
  - Bottom Seal at 2,648' bgs
    - TDS = 14,200 mg/L
    - Gross Alpha ~2 pCi/L

![](_page_23_Picture_9.jpeg)

#### **Aquifer Pumping Tests**

- Ellenburger Formation
  - Step and constant rate
  - Bottom seal at 2,865' bgs
    - Flow rate = 300 gpm with 440 feet of drawdown
    - Flow rate could be over 500 gpm if pump was set lower
  - Bottom seal at 2,648' bgs
    - Flow rate = 150 gpm with 565 feet of drawdown
    - Flow rate could be over 300 gpm if pump was set lower

![](_page_24_Picture_9.jpeg)

## Ell-1 Constant Rate Test 1

- Total Ellenburger: Bottom Seal at 2,865 ft
- First constant rate test run at 300 gpm for 400 minutes
- Drawdown stable at 440 ft

![](_page_25_Figure_4.jpeg)

# Video Logging

![](_page_26_Picture_1.jpeg)

![](_page_26_Picture_2.jpeg)

Daniel B. Stephens & Associates, Inc.

![](_page_27_Picture_0.jpeg)

#### Wellhead Completion

![](_page_28_Picture_1.jpeg)

![](_page_28_Picture_2.jpeg)

Daniel B. Stephens & Associates, Inc.

# Projected Cost Range for Build-Out

- Carollo Engineers
  - Flow Rate: 5 MGD
  - Supply Wells: 500 gpm
  - RO: 2-Stage
  - Pipeline: Southern Route
  - Disposal Deep Well Injection
- Estimated Project Cost = \$70 Million
  - Low projection = \$45 M; high projection = \$95 M)
- \$14 M per MGD BCWID, \$13 M per MGD San Angelo

![](_page_29_Picture_10.jpeg)

# Recommendations for Further Development

• Well Characterization

- Dynamic Well Flow and Concentration Profiling

• Well Flow Enhancement

- Lateral Jetting

![](_page_30_Picture_5.jpeg)

Miniaturized Down-Hole Diagnostics • Depth-dependent flow and water quality data collection

> Profile TDS and flow rate in selected zones

![](_page_31_Picture_2.jpeg)

![](_page_32_Figure_0.jpeg)

# Recommendations for Further Development

#### • Utilize

- Well flow and concentration profiling
- Geophysical logs (porosity, etc.)
- Lithology log
- Video log
- Well flow enhancement
  - Lateral Jetting

![](_page_33_Picture_8.jpeg)

## Lateral Jetting

- Lateral is Advanced via High-Pressure Acidization
  - Used in the oilfield for over 30 years; several companies utilize this technology
  - Great technology for limestone formations
  - Laterals jetted with acid formulation at 5,000 to 15,000 psi
  - Typical lateral is ~300 feet in length
  - Initial jetting outward is relatively quick: 300 feet in a minute or so; pullback is slower (45 minutes) and widens hole to 2 to 3 inches in diameter

![](_page_34_Picture_7.jpeg)

# Lateral Jetting

![](_page_35_Picture_1.jpeg)

![](_page_35_Picture_2.jpeg)

### Lateral Jetting

#### • Options

 Laterals can be "frac'ed" to connect vertically over a limited formation distance

#### Estimated cost

- ~\$6,000 per lateral
- \$15,000 to \$20,000 for mobilization depending on if specific downhole tools are available

#### Lateral Jetting

### Conclusions

- Ellenburger Aquifer wellfield is promising but will be a challenge to develop.
- Brown County Water Improvement District No. 1
  - Currently vetting out all options for additional supply
    - City of Brownwood Re-Use
    - Hickory well field in southern Brown County.

![](_page_37_Picture_6.jpeg)

#### **Questions?**

![](_page_38_Picture_1.jpeg)

#### Ell-1 Ellenburger/Hickory Exploration

![](_page_38_Picture_3.jpeg)