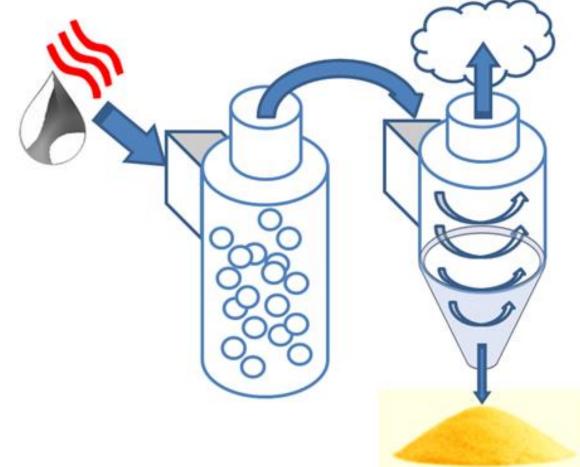


Barrels Per Year

24B

Cost Per Barrel \$3

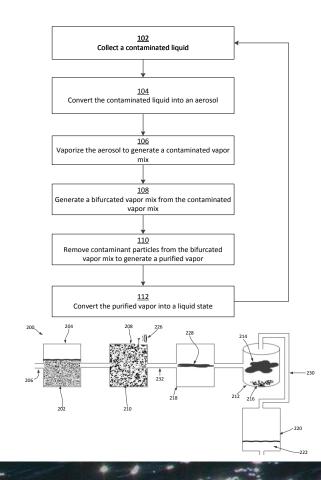
us Market \$72B





5:0!

SEACHANGE TECHNOLOGIES



SEACHANGE TECHNOLOGIES

Intellectual Property

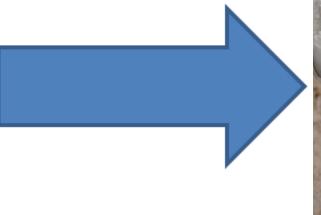
- Broad claims around process.
- US and PCT, May 2015, accelerated to Track 1 in 2016
- Strategy to extend with specific designs.

Dipak Mahato, PhD, Founder/CEO. 15 years R&D, patent development, NIH, Pfizer.

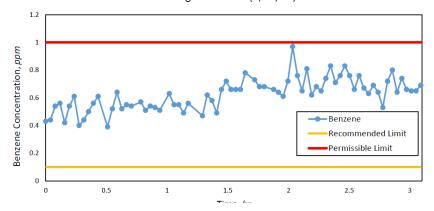
James Little, Engineering NCSU Mechanical engineering, 15 years engineering and IT.

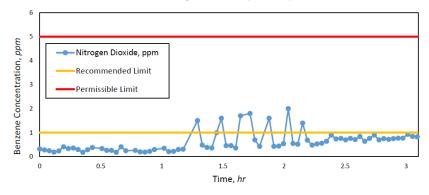
Kyle Harper, MBA, Business Development 15 years marketing and product launch.

Randy Marcuson, Advisor CEO Embrex. UNC Kenan Flagler Leadership Immersion Program



Validation


SEACHANGE TECHNOLOGIES


Emissions

Chemical	Formula	Class	
Ammonia	NH3	-	
Benzene	(CH)6	VOC/HAP	
Carbon Dioxide	CO2	GHG	
Carbon Monoxide	CO	NAAQS	
Ethane	C2H6	VOC	
Ethylbenzene	C8H10	VOC/HAP	
Formaldehyde	H2CO	HAP	
Methane	CH4	GHG	
Nitric Oxide (NO)	NO	NAAQS	
Nitrogen Dioxide (NO2)	NO2	NAAQS	
m-Xylene	C8H10	VOC/HAP	
o-Xylene	C8H10	VOC/HAP	
p-Xylene	C8H10	VOC/HAP	
Propane	C3H8	VOC	
Toluene	C7H8	VOC/HAP	

Benzene emission concentration as a function of time during SeaChange Field Trial (5/18/16)

Nitrogen dioxide emissions concentrations as a function of time during SeaChange Field Trial (5/18/16)

Harold Vance Department of

PETROLEUM ENGINEERING

Energy use

- Original prototype was solely electric powered.
- No other costs (chemicals, disposables, pre-treatment, filters/membranes)
- Zero liquid discharge, and zero liquid output.

Table 3-6 Comparison table the energy consumption of various water treatment technologies

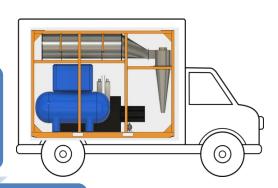
Seawater RO ¹		2.5-3.5	kWh/m³
PW RO⁵		10-15	kWh/m³
GPRI PW RO		26.5	kWh/m³
PW MVC ⁵		19-26	kWh/m³
SeaChange Prot	otype	75.3	kWh/m³
PW MED⁵		200	kWh/m³
PW FO ⁵		600	kWh/m³

Pilot System

- Gas fired, reducing operating costs.
- Currently under construction.
- Estimated December 2016 completion.

Energy requirement scenarios, based on thermodynamic model and power consumption.

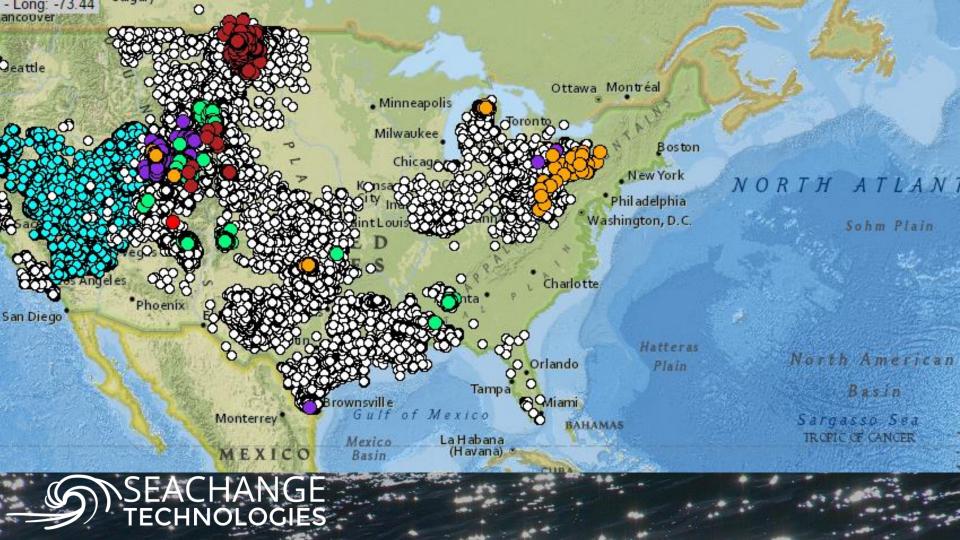
Scenarios				
Incoming water temp (F)	70	150	70	150
TDS (PPM NaCl)	30000	30000	200000	200000
ambient air temp (F)	65	65	65	65
ambient air relative humidity (%)	25	25	25	25
Energy requirement per gallon				
Electricity, motors (kWh)	0.17	0.17	0.17	0.17
Thermal (BTU)	10250	9630	7375	6760


ASSUMPTIONS AND CONSIDERATIONS

- Our thermodynamic model contains a variety of factors, and only the most impactful are shown.
- NaCl is modeled as the sole TDS material, because the model incorporates the specific heat of dissolved solids.
- The model incorporates a 20% safety factor for thermal energy. The electricity requirement is based on equipment ratings.

Business Model

Installation



Royalty fee

Service

www.seachangetechnologies.com

info@seachangetechnologies.com

