Hydraulic Fracturing Wastewater Treatment: Building a Framework

Yael R. Glazer

Texas Desal 2016

September 29, 2016

THE UNIVERSITY OF TEXAS AT AUSTIN

How do we select the right treatment for wastewater from shale?

THE UNIVERSITY OF TEXAS AT AUSTIN

WHAT STARTS HERE CHANGES THE WORLD

The U.S. shale basins are extensive

Webber Energy Group

THE UNIVERSITY OF TEXAS AT AUSTIN

Yael Glazer | HF Wastewater Treatment Framework

The process is water-intensive

Yael Glazer | HF Wastewater Treatment Framework

10/7/16

4

HF wastewater is often very dirty

Wastewater constituents include: hydrocarbons, salts, minerals, metals, naturally occurring radio active material (NORM)... ...and many more!

Shale plays differ in water characteristics and availability

Predominantly Oil or Gas Play	Wastewater Volume	Wastewater Quality	Average TDS* Concentration (mg/L)	Flared Gas Volumes	Sufficient Nearby Disposal
Oil	Low	Poor	250,000	Very High	Yes
Gas	Very Low	Moderate	130,000	Moderate	No
Oil & Gas	Medium	Good	40,000	High	Yes
Oil & Gas	Low	Good	25,000	Low	Yes
Gas	Low	Poor	110,000	Low	Yes
Oil & Gas	Very High	Moderate	120,000	Low/Medium	Yes
	Predominantly Oil or Gas Play Oil Gas Oil & Gas Oil & Gas Oil & Gas	Predominantly Oil Wastewater VolumeOilLowGasVery LowOil & GasMediumGasLowOil & GasLow	Predominantly Oil or Gas PlayWastewater VolumeWastewater QualityOilLowPoorGasVery LowModerateOil & GasMediumGoodGasLowGoodOil & GasLowPoorOil & GasVery HighModerate	Predominantly Oil or Gas PlayWastewater VolumeWastewater QualityAverage TDS* chychychyOilLowPoor250,000GasVery LowModerate130,000Oil & GasMediumGood40,000Oil & GasLowGood25,000GasLowPoor110,000Oil & GasVery HighModerate120,000	PredominantlyWastewaterWastewaterAverage TDS concentrationFlared GasOilLowPoor250,000Very HighGasVery LowModerate130,000ModerateOil & GasMediumGood40,000HighOil & GasLowGood25,000LowGasJenyModerate110,000LowOil & GasVery HighModerate120,000Low

THE UNIVERSITY OF TEXAS AT AUSTIN

Many ways to deal with wastewater

Deep well injection

Evaporation pit

Treatment facility

Reuse for subsequent well

Land applications

Discharge to surface water

The level of treatment depends on the end use for the wastewater

THE UNIVERSITY OF TEXAS AT AUSTIN

Yael Glazer | HF Wastewater Treatment Framework

10/7/16

8

We developed a tool to determine the optimal treatment technology

- Step 1: Build a water treatment technology database
- Step 2: Build a down-selection tool
- Step 3: Use the down-selection tool to determine the optimal treatment technology

Evaluated over 70 products for treating wastewater

Yael Glazer | HF Wastewater Treatment Framework

10

Many metrics were used to compare the different treatment technologies

TECHNOLOGY CONSIDERATIONS:

- Technology Readiness Level ("maturity")
- Mobility
- Recovery Rate
- Energy Requirements
 - Energy source & amount
- Constituents Removed
- Maximum Throughput Per Day
- Waste stream (requiring disposal)
- Service Cost or CAPEX & OPEX
- Personnel Requirements

Webber Energy Group

THE UNIVERSITY OF TEXAS AT AUSTIN

Yael Glazer | HF Wastewater Treatment Framework

11

Seven technologies were chosen

- Multistage Flash Distillation (MSF)
- Multi Effect Distillation (MED)
- Forward Osmosis (FO)
- Mechanical Vapor Recompression (MVR)
- Carrier Gas Extraction (CGE)
- Reverse Osmosis (RO)
- Membrane Distillation (MD)

And narrowed down to four

- Multistage Flash Distillation (MSF) X
- Multi Effect Distillation (MED) X
- Forward Osmosis (FO) X
- Mechanical Vapor Recompression (MVR)
- Carrier Gas Extraction (CGE)
- Reverse Osmosis (RO)
- Membrane Distillation (MD)

Built a down-selection tool

Motric	Weighting	M\	/R	R	0	CGE		MD		Max.
Weurc	weighting	Factor	Grade	Factor	Grade	Factor	Grade	Factor	Grade	Value
TRL	0.20	7	1.40	4	0.80	4	0.80	1	0.20	1.40
Mobility	0.15	7	1.05	4	0.60	4	0.60	7	1.05	1.05
Influent Quality	0.20	7	1.40	4	0.80	7	1.40	7	1.40	1.40
Effluent Quality	0.05	7	0.35	7	0.35	7	0.35	7	0.35	0.35
Waste Stream	0.20	3	0.60	3	0.60	3	0.60	3	0.60	1.40
Energy Intensity	0.10	4	0.40	7	0.70	4	0.40	1	0.10	0.70
Cost/Service Fee	0.10	4	0.40	4	0.40	4	0.40	4	0.40	0.70
Total	1.00		5.60		4.25		4.55		4.10	7.00

Yael Glazer | HF Wastewater Treatment Framework

10/7/16

14

Metric	Woighting	M١	/R	R	0	C	GE	Μ	D	Max.
Metho	Weighting	Factor	Grade	Factor	Grade	Factor	Grade	Factor	Grade	Value
TRL										
Mobility										
Influent Quality										
Effluent Quality										
Waste Stream										
Energy Intensity										
Cost/Service Fee										
Total										

Yael Glazer | HF Wastewater Treatment Framework

THE UNIVERSITY OF TEXAS AT AUSTIN

Motric	Woighting	MVR		RO		CGE		М	Max.	
Wellic	weighting	Factor	Grade	Factor	Grade	Factor	Grade	Factor	Grade	Value
TRL	0.20									
Mobility	0.15									
Influent Quality	0.20									
Effluent Quality	0.05									
Waste Stream	0.20									
Energy Intensity	0.10									
Cost/Service Fee	0.10									
Total	1.00									

Yael Glazer | HF Wastewater Treatment Framework

THE UNIVERSITY OF TEXAS AT AUSTIN

16

Relative importance of the metric to the decision

17

10/7/16

Motric	Weighting	MVR		RO		CGE		MD		Max.
metric	Weighting	Factor	Grade	Factor	Grade	Factor	Grade	Factor	Grade	Value
TRL	0.20	7								
Mobility	0.15	7								
Influent Quality	0.20	7								
Effluent Quality	0.05	7								
Waste Stream	0.20	3								
Energy Intensity	0.10	4								
Cost/Service Fee	0.10	4								
Total	1.00									

Yael Glazer | HF Wastewater Treatment Framework

THE UNIVERSITY OF TEXAS AT AUSTIN

Relative importance of the metric to the decision

Technology-specific rating for a specific metric

Metric	Weighting	M	⁽ R	RO		CGE		MD		Max.
Metho	Weighting	Factor	Grade	Eactor Grade		Factor	Grade	Factor	Grade	Value
TRL	0.20	7	1.40							
Mobility	0.15	7	1.05							
Influent				Wei	ghting ^s	* factor				
Quality	0.20	7	1.40							
Effluent										
Quality	0.05	7	0.35							
Waste Stream	0 20	3	0.60							
Enerav	0.20									
Intensity	0.10	4	0.40							
Cost/Service										
Fee	0.10	4	0.40							
Total	1.00		5.60							

Yael Glazer | HF Wastewater Treatment Framework

THE UNIVERSITY OF TEXAS AT AUSTIN

Relative importance of the metric to the decision

Technology-specific rating for a specific metric

Metric	Weighting	M	'R	R	0	C	GE	Μ	ID	Max.
metric	Weighting	Factor	Grade	Factor	Grade	Factor	Grade	Factor	Grade	Value
TRL	0.20	7	1.40							1.40
Mobility	0.15	7	1.05							1.05
Influent Quality	0.20	7	1.40	wei	gnting ?	* Tactor				1.40
Effluent Quality	0.05	7	0.35				Highes grade	t possi for a m	ble etric	0.35
Waste Stream	0.20	3	0.60							1.40
Energy Intensity	0.10	4	0.40							0.70
Cost/Service Fee	0.10	4	0.40							0.70
Total	1.00		5.60							7.00

Yael Glazer| HF Wastewater Treatment Framework

THE UNIVERSITY OF TEXAS AT AUSTIN

Relative importance of the metric to the decision

Technology-specific rating for a specific metric

Motric	Weighting	M	⁽ R	R	0	C	GE	Μ	D	Max.
Wethe	Weighting	Factor	Grade	Factor	Grade	Factor	Grade	Factor	Grade	Value
TRL	0.20	7	1.40							1.40
Mobility	0.15	7	1.05							1.05
Influent				Wei	ghting ?	* factor				
Quality	0.20	7	1.40							1.40
Effluent							Highes	t possil	ble	
Quality	0.05	7	0.35				grade	for a me	etric	0.35
Waste Stream	0.20	3	0.60							1.40
Energy Intensity	0 10	4	0.40							0.70
Cost/Service		· ·								
Fee	0.10	4	0.40							0.70
Total	1.00		5.60							7.00

Yael Glazer | HF Wastewater Treatment Framework

THE UNIVERSITY OF TEXAS AT AUSTIN

Webber Energy Group

MVR was identified as the best technology

Motric	Weighting	M\	/R	R	0	CGE		MD		Max.
Weurc	weighting	Factor	Grade	Factor	Grade	Factor	Grade	Factor	Grade	Value
TRL	0.20	7	1.40	4	0.80	4	0.80	1	0.20	1.40
Mobility	0.15	7	1.05	4	0.60	4	0.60	7	1.05	1.05
Influent Quality	0.20	7	1.40	4	0.80	7	1.40	7	1.40	1.40
Effluent Quality	0.05	7	0.35	7	0.35	7	0.35	7	0.35	0.35
Waste Stream	0.20	3	0.60	3	0.60	3	0.60	3	0.60	1.40
Energy Intensity	0.10	4	0.40	7	0.70	4	0.40	1	0.10	0.70
Cost/Service Fee	0.10	4	0 40	4	0 40	4	0.40	4	040	0.70
Total	1.00		5.60		4.25		4.55		4.10	7.00

Yael Glazer | HF Wastewater Treatment Framework

10/7/16

21

MVR was identified as the best technology

MetricWeightingFactorGradeFactorGradeFactorGradeFactorGradeValueTRL0.2071.4040.8040.8010.201.40Mobility0.1571.0540.6040.6071.051.05Influent Quality0.2071.4040.8071.4071.401.40Effluent Quality0.0570.3570.3570.3570.350.35	Motric	Woighting	N	MVR	R	RO		CGE		MD	
TRL0.2071.4040.8040.8010.201.40Mobility0.1571.0540.6040.6071.051.05Influent Quality0.2071.4040.8071.4071.401.40Effluent Quality0.0570.3570.3570.3570.350.35	Weurc	weighting	Factor	Grade	Factor	Grade	Factor	Grade	Factor	Grade	Value
Mobility 0.15 7 1.05 4 0.60 4 0.60 7 1.05 1.05 Influent Quality 0.20 7 1.40 4 0.80 7 1.40 7 1.40 1.40 Effluent Quality 0.05 7 0.35 7 0.35 7 0.35 7 0.35	TRL	0.20	7	1.40	4	0.80	4	0.80	1	0.20	1.40
Influent Quality0.2071.4040.8071.4071.401.40Effluent Quality0.0570.3570.3570.3570.350.35	Mobility	0.15	7	1.05	4	0.60	4	0.60	7	1.05	1.05
Effluent Quality 0.05 7 0.35 7 0.35 7 0.35 7 0.35 <th< th=""><th>Influent Quality</th><th>0.20</th><th>7</th><th>1.40</th><th>4</th><th>0.80</th><th>7</th><th>1.40</th><th>7</th><th>1.40</th><th>1.40</th></th<>	Influent Quality	0.20	7	1.40	4	0.80	7	1.40	7	1.40	1.40
	Effluent Quality	0.05	7	0.35	7	0.35	7	0.35	7	0.35	0.35
Waste Stream 0.20 3 0.60 3 0.60 3 0.60 3 0.60 1.40	Waste Stream	0.20	3	0.60	3	0.60	3	0.60	3	0.60	1.40
Energy Intensity 0.10 4 0.40 7 0.70 4 0.40 1 0.10 0.70	Energy Intensity	0.10	4	0.40	7	0.70	4	0.40	1	0.10	0.70
Cost/Service Fee 0.10 4 0.40 4 0.40 4 0.40 0.70	Cost/Service Fee	0.10	4	0.40	4	0.40	4	0.40	4	0.40	0.70
Total 1.00 5.60 4.25 4.55 4.10 7.00	Total	1.00		5.60		4.25		4.55		4.10	7.00

Yael Glazer | HF Wastewater Treatment Framework

The tool can be modified for different shale regions and treatment technologies

Metric Weighti		iahtina	M	/R	R	0	C	GE	MD		Max.
meane		gnang	гасил	Graue	Гастог	Graue	гасцог	Graue	гастог	Graue	Value
TRL		0.20	7	1.40	4	0.80	4	0.80	1	0.20	1.40
Mobility		0.15	7	1.05	4	0.60	4	0.60	7	1.05	1.05
Influent Quality		0.20	7	1.40	4	0.80	7	1.40	7	1.40	1.40
Effluent Quality		0.05	7	0.35	7	0.35	7	0.35	7	0.35	0.35
Waste Stream		0.20	3	0.60	3	0.60	3	0.60	3	0.60	1.40
Energy Intensity		0.10	4	0.40	7	0.70	4	0.40	1	0.10	0.70
Cost/Service Fee		0.10	4	0.40	4	0.40	4	0.40	4	0.40	0.70
Total		1.00		5.60	}	4.25		4.55		4.10	7.00

Yael Glazer | HF Wastewater Treatment Framework

Choosing optimal treatment depends on several factors

- Regulations vary state to state
 - Often not aligned with the potential beneficial uses for wastewater
- Treatment level and type differs based on desired use
- Shale plays have varying characteristics
 Quality and quantity of wastewater

Yael Glazer | HF Wastewater Treatment Framework

10/7/16

 $\mathcal{D}4$

Future considerations

- Incorporate economic and market constraints
- Evaluate other technologies (beyond distillation) using the down-selection tool
- Use the tool to inform industry, policy makers, and the general public on beneficially treating wastewater

Yael Glazer | HF Wastewater Treatment Framework

<u>10/7/16</u>

Thank you!

Co-authors: Jamie J. Lee | F. Todd Davidson, Ph.D. | Margaret Cook | Michael E. Webber, Ph.D.

Sponsors:

Questions?

Yael R. Glazer Ph.D. Candidate The University of Texas at Austin yael@utexas.edu www.webberenergygroup.com

THE UNIVERSITY OF TEXAS AT AUSTIN