

# Texas Desal 2017 NEXED EDR Technology Demonstration 22nd September 2017

#### **AGENDA**

- Evoqua Overview
- NEXED EDR Technology Development Background
- NEXED Technical Overview
- Evoqua / AccelerateH2O / UTEP Collaboration
- Demonstration Site Overview



### **Evoqua Overview**

Our Brands...



WATER TECHNOLOGIES





### **NEXED EDR Technology Development Background**

#### **Evoqua Electrochemical Desalination**

- Project began as a technology development endeavor through funding from Singapore government agencies EWI (of PUB) and EDB
- Technology development phase from 2008 to 2011 culminating in a 50 m<sup>3</sup>/day demonstration system
- Collaborative project between Singapore and US R&D teams
- Seawater desalted at 1.65 kWh/m3
- Received approval to construct a new 1,892 m3/day (0.5 MGD) demonstration plant





### **NEXED EDR Technology Development Background**

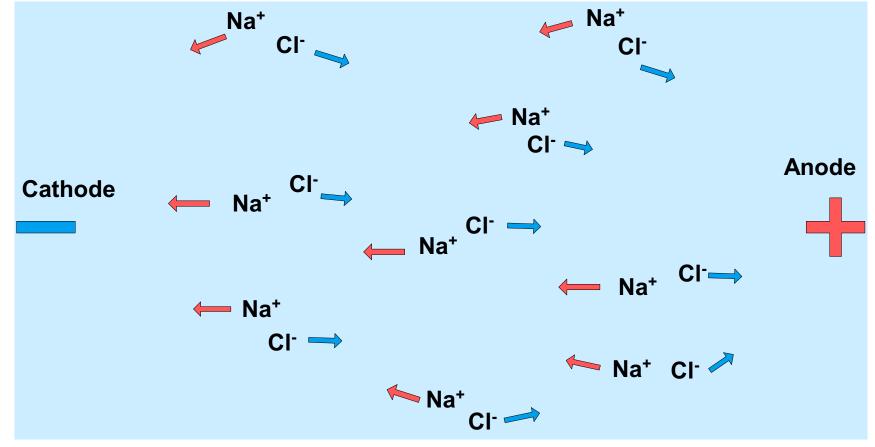
October 2008-2010: Began R&D with Singapore EWI and commissioned Demo

**December 2011:** Product Development Phase Approval

June 2015: Factory established in Cleantech Park (Singapore) for NEXED

November 2015: RO Reclaim and well water NEXED pilot installed at Evoqua Manufacturing Facility

**January 2016:** NEXED Module product launch, commercially available to the market


March 2016: First commercial sale in USA for RO Reclaim Application

#### **CURRENT STATUS**

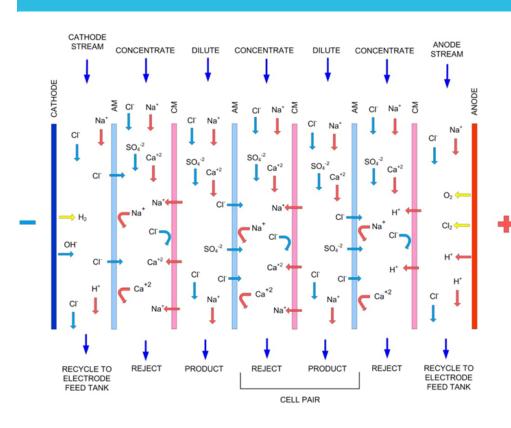
- 8 Pilots / Demonstrations completed or in operation
- Continuous R&D Investment to Optimize Performance and Cost Position
- Business Development focus on 'Select' Applications



#### Salt Movement in Solution with Electric Field



**Opposite charges attract** 


Like charges repel

Anions migrate towards anode

**Cations migrate towards cathode** 

#### **Add Ion Exchange Membrane**

#### **Electrochemical Desalination (ED)**



- Electricity drives the transport of dissolved ions such as Na<sup>+</sup> and Cl<sup>-</sup>
- Ion Exchange Membranes (IEM) allow the removal of selected ions



**NEXED Modules – EDR Designed as 'Desalting Engines'** 

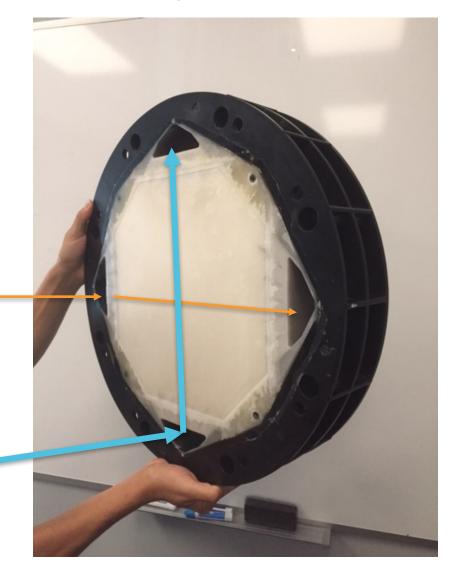


Traditional assembly

Advanced building block design

VS




'Innovative, next generation configuration of a commercially accepted and proven technology process'



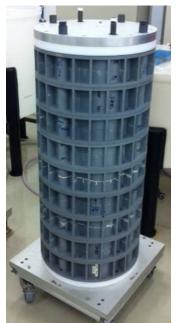
## **NEXED Sub-Block cross flow design**

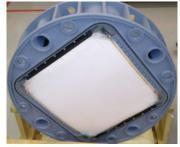
**Concentrate Flow** 

### **Product Water flow**



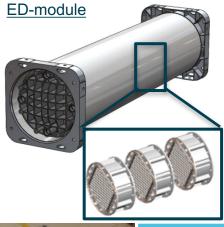



### **Evoqua's NEXED® Technology 'Electrochemical Desalination'**


**Evoqua's EDR Module** 

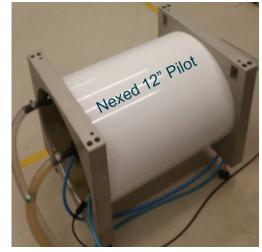
~85% Membrane Utilization

**Automatable Assembly** 


**Molded Components** 



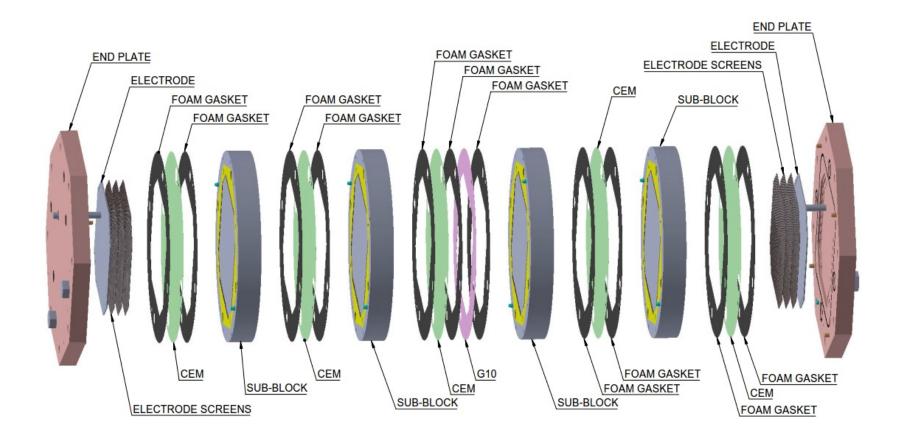





#### **Detail**



Sub-blocks


- 4 NexED3
- 16 NexED12



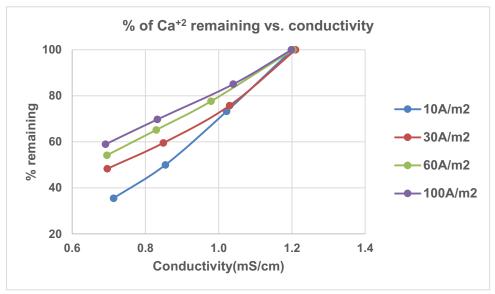
| Preliminary result:                   | Evoqua-ED | RO    |
|---------------------------------------|-----------|-------|
| NaCl Feed (ppm):                      | 1,800     | 1,800 |
| Product @ 1 m <sup>3</sup> /hr (ppm): | 430       | 54    |
| Reject<br>(ppm):                      | 17,000    | 8,800 |
| Recovery:                             | 91%       | 80%   |
| Energy<br>(kw.hr/m³):                 | 0.73      | >1    |

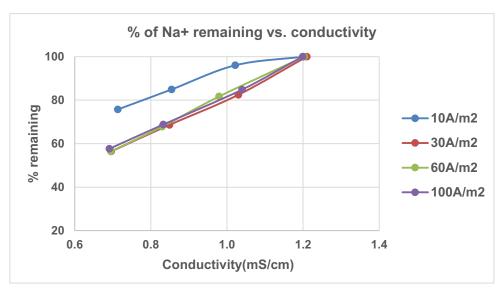


# **NEXED Technical Overview NEXED Module Internal Design**





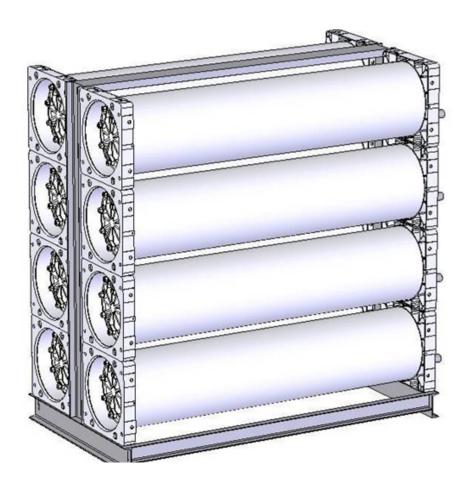

### **Example of test results with a simulated well water**


| Cations | Concentration | Units |
|---------|---------------|-------|
| Ca2+    | 95.9          | mg/L  |
| Na+     | 143.1         | mg/L  |
| Anions  | Concentration | Units |
| HCO3-   | 165.1         | mg/L  |
| Cl-     | 257           | mg/L  |
| SO42-   | 52            | mg/L  |

Total hardness: 239.6 mg/l CaCO<sub>3</sub>

LSI: 0.53

- Ca+2 is preferentially removed at low current densities
- % removal of Na<sup>+</sup> and Ca<sup>+2</sup> converge as the current densities increase








# **NEXED Technical Overview NEXED Advantages over Conventional EDR**

- Modular design modules are stackable allowing for 100 m3/hr (440 GPM) in 4'W x 6'L x 8'H space
- 2) Up to 30% less energy with thin low energy membrane
- 3) Cost competitive automated design
- OEM model allows for efficient custom system design
- 5) Membranes designed for high cleanability
- Adaptable internal configuration for optimized solutions

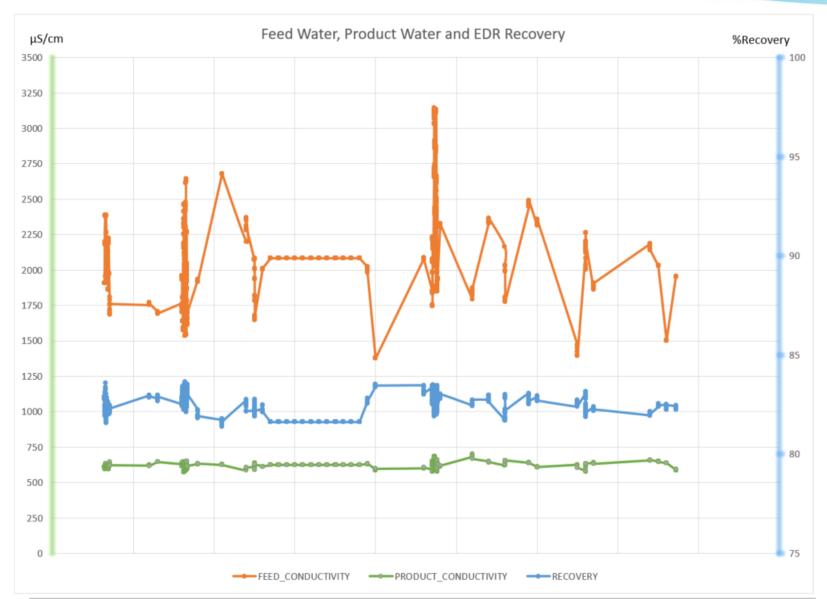




# **NEXED Technical Overview NEXED Advantages over Reverse Osmosis**

Not RO membrane filtration **Less Biofouling potential** Not RO membrane filtration Less silt fouling Reduced CIP and maintenance Less operating costs Resistant to process upsets \_\_\_\_\_ Stackable modules Less space requirements Adjustable, designed according to Can be optimized for low energy, site specific needs high recovery or small footprint. Reduced costs and maintenance Real time adjustment of salt removal —Tunable, adjustments in electrical current effects product water quality




# **NEXED Technical Overview NEXED 'Sweet Spot'**

- Feed TDS <7000 mg/l</li>
- High recovery, 75-95%.
- Salt removal rates of 70 95%.
- High silica feed water
- Feed water with <0.3 mg/l Fe,</li>
   <0.1 mg/l Al & Mn, with CaCO3 &</li>
   CaSO4 below saturation.
- Difficult applications for RO



System by Master Service Provider for North America







# **NEXED™** Applications Desalting for recovery, reuse and recycle

#### **Applications include:**

- Brackish water TDS reduction
- > RO reject recovery
- Cooling tower blowdown
- Wastewater reuse
- Variable salinity applications
- Hardness Removal (Softening)





# **NEXED Technical Overview Evoqua has Solved Major Technology Gaps**

- Broadening the applicability of Electrochemical Desalting techniques
- Cost driven and designed for automation
  - New Low Energy Membrane
  - New Module design
  - New Process design





# Demonstration Site Overview Kay Bailey Hutchison Desalination plant











Cartridge Filter Casing



Feed Pumps



TecH<sub>2</sub>O Center Exhibit Hall



Salts



- The El Paso Water Kay Bailey Hutchison Desalination plant has the largest design capacity in the state (27.5MGD), and is the largest inland desalination plant in the world
- 16 production wells and 16 blend wells feed groundwater from the Hueco Bolson Aquifer
- Pretreatment includes sand strainers, cartridge filters, and the addition of anti-scalant.
- There are 5 reverse osmosis trains constructed in a two-stage configuration, 48:24 pressure vessel array.
- Each train is designed to produce 3 MGD at 82.5 percent recovery.



### **Evoqua / AccelerateH2O / UTEP Collaboration**

The technology demonstration project, execution of a multi-month operating cycle of Evoqua's NEXED technology on a pre-qualified, TCEQ permitted facility for brackish desalination and advanced water treatment.



- Technology Supply
- Project Direction
- Business Development & Commercialization



- Project Management
- Stakeholder Outreach / Marketing





- Site Operation & Management
- Technology Performance Monitoring, Reporting & Evaluation



# **Demonstration Site Overview Evoqua NexSys Skid Mounted System Installation**

- Technical Details of the Installation
- Flows 25 gpm
- Configuration 2-Pass ( 2-stage)

#### OPERATING PHASES

- Phase 1 Evaluation Begins, 88% System Recovery at 650 ppm
- Phase 2 Highest Energy Savings, 82.5%
   Recovery Meeting Output of 650 ppm









# TRANSFORMING WATER. ENRICHING LIFE.



Thank You for your attention Bradley.Rickenbach@Evoqua.com