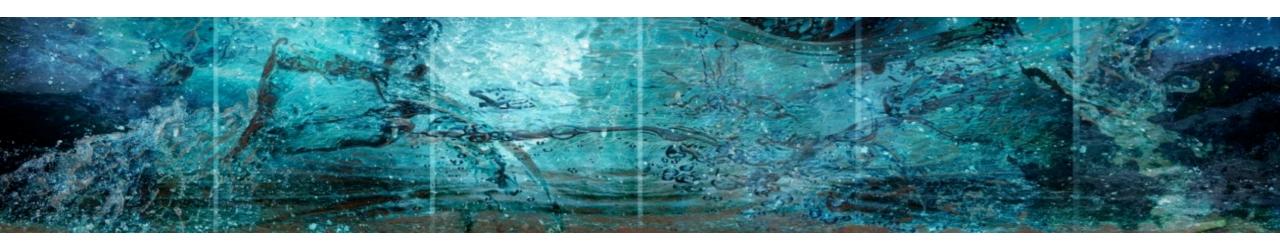
The SAWS Story: Developing Brackish Desal in Texas

Duane Bryant, P. E. Project Engineer, Desalination and Integration, SAVVS Saqib Shirazi, P. E. PMP Project Manager, Desalination and Integration, SAVVS Praveen Krishna, P. E. Senior Engineer, Parsons Roberto Macias Manager, Production and Treatment Operations, SAVVS

Texas Desal 2017 September 21, 2017

WATERF

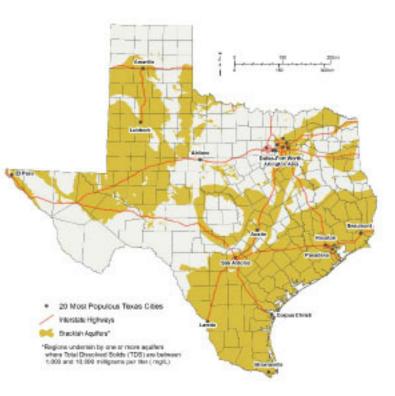

SAWS Overview / Timeline / Big Lessons

Duane Bryant, P. E. Project Engineer, Desalination and Integration, SAWS

Outline

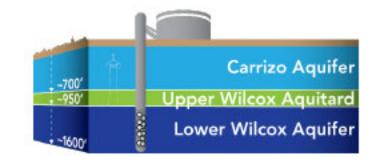
- Water Challenges
- Project Background
- Project Challenges
- Facility Highlights

Water Supply Challenges



Why Brackish Inland Desalination

- Large volumes of available brackish water
- Resource close to San Antonio
- Identified in the SAWS 2005 Water Management Plan
- Diversification
- Untapped resource



Desalination Program

General Information

- Phase I (2016) 12 MGD 13,440 Acrefeet / year
 - (~53,000 Households)
- Source Water
 - Lower Wilcox Formation
 - 12 Production wells (~1,500' avg. depth)
- Treatment Process
 - Reverse Osmosis
- Concentrate Disposal
 - 2 Injection wells (5,000' avg. depth)



Page 6

Project Cost Phase I

- Project Cost: \$192.7 million, \$1,177 \$/AF
- Began producing water November 9, 2016

Challenges

- State and Local Groundwater Regulation
- Public Perception
- Stakeholder Buy in
- Funding/Value Engineering
- Real Estate
- Concentrate Disposal
- Design
- Construction
- Operational

Concentrate Disposal

Options Considered

Design Challenges

- Prevent Membrane fouling
 - Open System vs. Closed System
 - Pre-treatment
- Finish water quality standards
- Short design timeline
 - Multiple sub-consultants

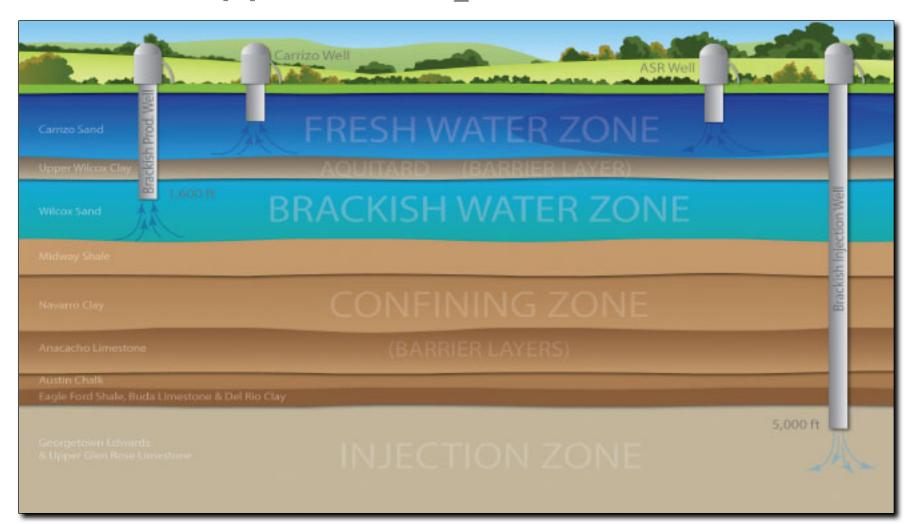
Construction

Challenges

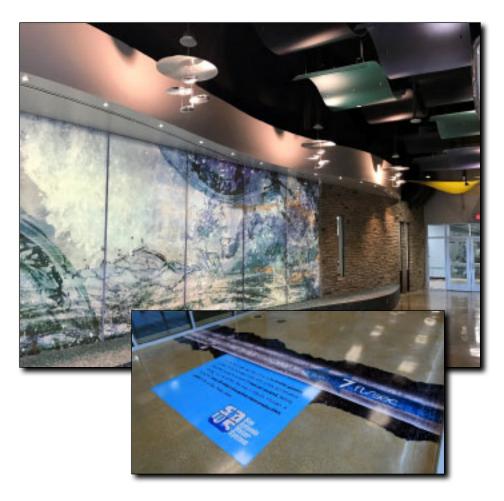
- Budget
 - Managing a budget without owner contingency
- Schedule
 - Record Rainfall (2 yrs.)
- Complicated Construction
 - 13 Work Packages

Operational Challenges

- Learning curve
 - Fully automated plant
 - Bring in operators early
 - I month RDT & 3 months commissioning phase
- Operational
 - Raw Water
 - Cartridge Filters/Turbidity
 - Fouling
 - Meeting Finished Water Goals

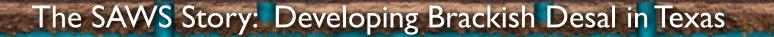

Page 12

Treatment Facility



Three Water Supplies at H_2Oaks

Water Supply and Educational Center Education and Outreach

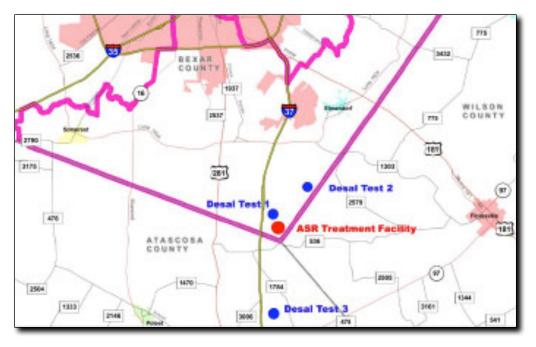


Water Supply and Educational Center Education and Outreach

Grand Opening Festivities January 27, 2017

Acknowledgements

ZACHRY PARSONS


Reverse Osmosis System Design

Saqib Shirazi, P. E. PMP Project Manager, Desalination and Integration, SAWS

SAWS Brackish Groundwater Desalination Plant

Process Diagram

Raw Water Supply

- Wilcox Aquifer Brackish Water TDS Approx. 1,500 mg/L
- 12 production wells
- Approximately II miles of conveyance pipeline
- Production Well Details:
 - Maximum Flow: 700-1,000 gpm
 - Well Depth: Approx. 1,500 ft
 - Well Pump Depth: up to 750 feet BLS

Production and Injection Wellfield

BGD 05

BGD 06

¹ BGD 04

BGD 03

BGD 02 BGD 01

BGD 11 BGD 12

BGD 10

BGD 09

• IW 01

BGD 07

BGD 08

1,000 2,000 3,000 4,000 aerial imagery date: 1/16/2017

feet

Raw Water Supply Well Operation

- Screened production zone with gravel packing due to fine sand aquifer
- On-line turbidimeters at each well to provide general indication of water quality
- Variable speed well pumps for anticipated future draw down
- Three (3) supply wells required for each Primary RO skid
 - Ist and 2nd wells maintain flow set point
 - 3rd well maintains pressure set point at WTP
- Well Startup Sequence:
 - Timed pre-lubrication of pump shaft bearings prior to start
 - Pre-flush to waste operation (typically 15 minutes, but adjustable)
 - Multiple Timed Events = Normal start-up sequence is a time consuming process

Conveyance Pipeline

- "Closed System" conveyance pipeline design was implemented to prevent air contact with the raw water
- During plant shutdown periods, one well stays running to maintain pressure in pipeline
- Pre-lubrication water is normally taken from raw conveyance pipeline, select wells are equipped with a backup potable water pre-lube supply (for power failures)
- Plant provides on-line turbidity and ORP sampling of flushed water (prior to chemical or physical pretreatment)

Pre Treatment

- Scale Inhibitor/Antiscalant
- pH Adjustment to 6.5 using Sulfuric Acid
- Cartridge Filters
 - 3 x 7.0 MGD Units
 - 14.0 MGD with One (1) Unit Offline
 - 5-Micron Nominal Polypropylene, String Wound, SOE, 40-inch

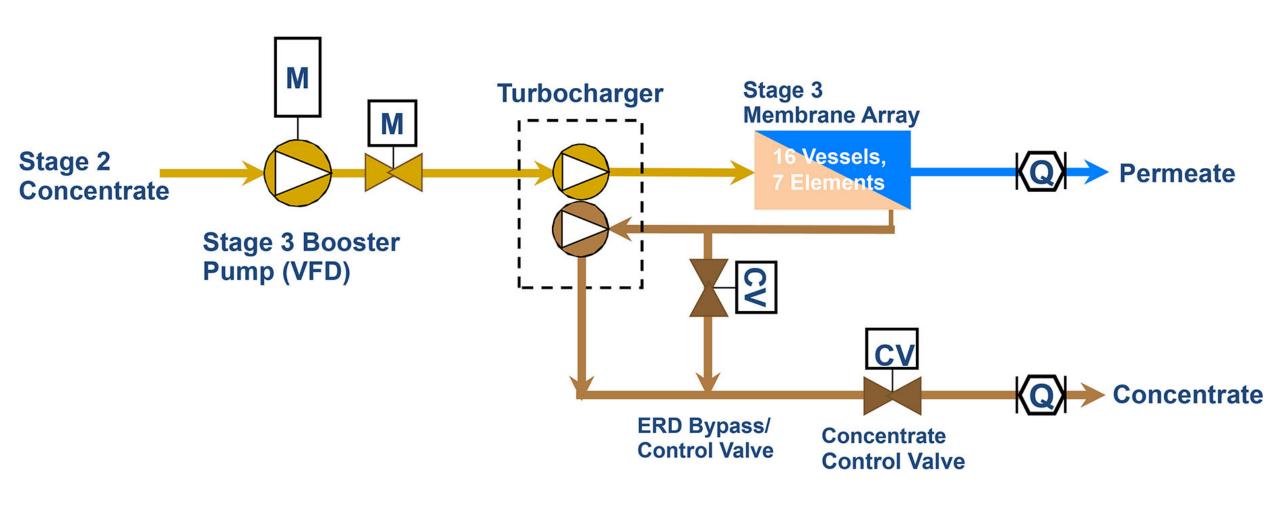
Operation Scenarios

Permeate Flow (mgd)	Primary RO Units Running	Concentrator RO Units Running	Primary Concentrate Bypass Flow (mgd)	Final Concentrate Flow (mgd)	Overall Recovery
2.22	I	0	0.55	0.55	80%
4.44	2	0	1.11	1.11	80%
5.0	2	I	0	0.55	90%
7.22	3	I	0.55	1.11	86.75%
10.0	4	2	0	1.11	90%

Page 27

Reverse Osmosis Treatment

• Primary RO


- Capacity: 2.22 MGD
- 80% Recovery
- 4 Skids in Initial Phase, 10 Skids at Buildout
- Array: 40:20 Vessels, 7-Elements in Series
- Concentrator RO
 - Capacity: 0.55 MGD
 - 50% Recovery
 - 2 Skids in Initial Phase,4 Skids at Buildout
 - Array: 16 Vessels,7-Elements in Series
 - Expandable to 20 Vessels

Dow FilmTec BW30-400 (34 mil spacer)

Energy Recovery Device

Post Treatment

- Calcite Contactors Calcium and Alkalinity Addition
- Raw Water Blending Supplemental Alkalinity & Hardness
- Degasifiers –Excess CO₂ Removal
- Sodium Hydroxide Final pH Stabilization
- Chlorine Disinfection

Calcite Contactor System

- Up to 30% Side Stream of 10 MGD of RO Permeate
- TomCO Pressurized Solution Feed System (PSF)TM used for efficient CO₂ feed to the influent water stream
- Sulfuric acid feed for supplemental pH adjustment and backup to CO₂

Post Treatment – Brackish Water Water Blending

- Incorporates Both Raw Water Blend AND Calcite Contactors for Remineralization
 - With no raw water blending, finished water calcium and alkalinity goals can still be attained through operation of calcite contactors
 - With raw water blending, chemical use $(CO_2, calcite media)$ in the calcite contactors can be reduced

Raw Water Blend (Bypass) Control Valve

Clean-In-Place

- Two (2) 900 gpm Cleaning Pumps, VFD Controlled
- Two 4,500 gal Mixing Tanks
- Cleaning Capacity: Entire Ist stage (40 vessels)
 - Upsized Piping and Tanks
 - Hard-Piped to RO Skids
- Catwalk Tank Access for Chemical Loading from Mezzanine Storage Area
- System Flexibility:
 - Immersion Heaters and Mechanical Mixers on Both Tanks
 - Cleaning pumps can recirculate tanks for mixing or transfer solutions

Injection Wells for Concentrate Disposal

- Two injection wells
- Injection Well Details:
 - Well Depth: 5,000 ft
 - Avg. Flow: 500 gpm (30 day avg)
 - Instantaneous Flow: 1,000 gpm
 - IW Pressures: 775 psi max, 150-250 psi at 385 gpm
 - Injection Zone TDS: 90,000 mg/L
- First Class I UIC General Discharge Permit issued by TCEQ for RO Concentrate Disposal

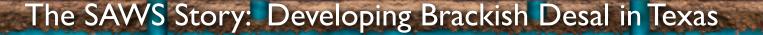
Concentrate Disposal Limitations

Concentrate disposal capacity limitations necessitated a strategy for management and disposal of water wasted during:

- Raw Water Wells at Startup
- Raw Water Pipeline Flushing at Startup
- Pretreatment System Flushing at Startup
- RO Skid Flushing at Startup and Shutdown

From Construction to Start-Up

Praveen Krishna, P. E.


Senior Engineer

Outline

- Project WQ Requirements
- WQ Sampling Plan Development
- Startup Planning & Data Collection
- Trend from Reliability Demonstration Testing (RDT)
- Commissioning Phase Data Collection
- Components Covered
 - Raw Water, Post Membrane Treatment, Finished Water, & Injection Wells

Key Requirements

- Why Sample
- What Parameters
- Requirements
 - TCEQ Regulatory
 - Operational Control
 - Performance Monitoring
 - Public Health Safe Drinking Water

-

Page 38

Project Finished Water Goals

Key Parameters Turbidity Iron LSI MAKING SAN ANTONIO WATERFUL

Page 39

Parameter	Unit	Design Raw Water Quality ⁽⁸⁾	Permeate Water Quality Goals ^{#1}	TCEQ Drinking Water Standards	Finished Water Quality Goals ⁽¹⁾		
Temperature	•c	25-35	NA	NA	28		
remperature	(*F)		NA	NA	82		
Turbidity	NTU	1	NA	< 0.3	< 0.1		
Total Dissolved Solids (TDS)	mg/L	1710(7)	<95	1000 ⁽²⁾	< 400		
Calcium	mg/L	35	-		40 - 110		
Magnesium	mg/L	17	-	_	NA		
Hardness (Total)	mg/L as CaCO ₃	160	-	-	100 - 300		
Alkalinity	mg/L as CaCO ₃	260	1	-	> 100		
Sulfate	mg/L	560	<15	< 300 ⁽³⁾	10-75		
Chloride	mg/L	270	<25	< 300 ⁽³⁾	< 100		
Sodium	mg/L	470	<30	NA	NA		
Strontium	mg/L	4.8	41	NA	NA		
Barlum	mg/L	0.034	⊲0.1	NA	NA		
Fluoride	mg/L	0.30	⊴0.1	NA	NA		
Potassium	mg/L	9.5	<1.0	NA	NA		
Silica	mg/L	21	<1.5	NA	NA		
Color	Color Units	<10	-	< 15	< 3.0		
Odor	T.O.N	4	-	< 3	< 2.5		
рH	-	7.6	-	>7	7 - 8.5		
iron (Total)	mg/L	0.4	⊴0.1	< 0.3	< 0.2		
Manganese (Total)	mg/L	0.06	-	< 0.05	< 0.03		
Langlier Saturation Index (LSI)	-	NA	-	Depositing	0.1 - 0.4		
Ryznar Stability Index (RSI)	-	NA	-	Depositing	< 8.0		
Arsenic	mg/L	0.004	-	< 0.01	< 0.01		
Hydrogen Suilide	mg/L	<0.1	-	< 0.05	< 0.03		
Radon	рСИL	<300	-	< 300 ⁽⁴⁾	< 100		
Radium-226 & 228, Combined	pCI/L	~	-	< 5	< 3		
Total Trihalomethanes (TTHM)	mg/L	NA	NA	< 0.08	< 0.04		
Haloacetic Acids (HAA5)	mgL	NA	NA	< 0.06	< 0.03		

Page 40

Startup: Planning

- Requirements
 - TCEQ 30 TAC 290 Subchapter F Rules, & Membrane Use Checklist.
 - Program Manager (B&V) Sampling Memo
 - Operational Requirements
 - Safety (Public Health)
- TCEQ Meeting
 - Present Sampling Plan, Identify Missing Information
- Plan for Startup, RDT, TCEQ Approval, SAWS Approval-
 - Present Plan to SAWS & PM
- Historical Data Management and Reports Workshop
 - Data Capture, Frequency, Storage,
 - Reports Daily, Weekly, Monthly

Program Manager's Sampling Memo Excerpt (WQ)

Monitor SDI Iron Conductivity

Stream	Parameter	Freq	Discussion
Each	SDI	D, then W if	SDI is an important RO feed water
Production Well		stable	parameter.
	Full (including	W, then M –	To develop understanding of each well.
	Iron, Total & Dis)	6W	
	TDS	W, then M –	To develop raw water site-specific ratio
		6W	for TDS: Conductivity.
Combined Raw	Same as for each	Same as each	
Water (pre-cart	production well:	well	
filt)	SDI, Full, and TDS		
RO Feed (post-	SDI	D (possibly	SDI is an important RO feed water
cart filt)		multiple/D	parameter and most important at this
		during	location.
		startup)	
	Full (including	М	
	Iron, Total & Dis)		
	Iron, total &	D, then W if	
	dissolved	stable	
Each RO unit	Conductivity map	$1 \operatorname{time} \sim 2$	Measure conductivity (& enter data in a
		weeks after	table) of every RO stream with a sample
		start, 1 M later, then	tap and perm from every vessel, as well
		later, then every 6M	as concurrently recording RO operating parameters and setpoints. This allows
		every on	operators to find flaws in o-rings etc,
			and a useful historic data set for future
			comparisons and troubleshooting.

Startup: Planning

• Requirements

- TCEQ 30 TAC 290 Subchapter F Rules, & Membrane Use Checklist.
- Program Manager (B&V) Sampling Memo
- Operational Requirements
- Safety (Public Health)
- TCEQ Meeting
 - Present Sampling Plan, Identify Missing Information
- Plan for Startup, RDT, TCEQ Approval, SAWS Approval-
 - Present Plan to SAWS & PM
- Historical Data Management and Reports Workshop
 - Data Capture, Frequency, Storage,
 - Reports Daily, Weekly, Monthly

Startup: Road Map

- Functional Testing and Startup Meeting
- Present Staffing, Operations, Sampling and Monitoring Plan for -
 - Coordination
 - Functional and Start Up Testing (2 Weeks)
 - Obtain TCEQ Approval
 - Reliability Demonstration Testing (30 Days)
 - Commissioning/Operations Phase (90 Days)
- Reporting and Monitoring Discussions
- TCEQ Compliance
- Process Monitoring
- Treatment Process Constraints

Startup: Experiences

- During Pre-Functional/Functional Testing
 - Irrigation Pond Operations and Limits
 - No Sewers Nearby
 - Permitted to Spray Irrigate 1,400 gpm at 2,000 mg/LTDS
 - Volume Limitation
 - Operating Duration

(@ 5 mgd rate for 4 hrs; @ 2 mgd rate for 14 hrs etc.)

- Startup / RDT
 - Injection Wells
 - TCEQ Approval
- Finished Water Quality Goals were achieved

REGULATORY MONITORING -

Startup: Sampling and Data Collection

PW - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12

		P1		- 2	- 3		- 9	- 0		- 0	- 3	- 10		- 12
Monitoring	Frequency	. Location		t. ID										
Level (Depth to wate	Continuous	PW	LT10	LT10	LT10	LT10	LT10	LT10	LT10	LT10	LT10	LT10	LT10	LT1
													hly re	
Flow (gpm)	Continuous	Elec. Bldg.											FE10	
			Col	lecte	d in S	CAD	A. Ca	n be	print	ed as	daily	mont	hly re	port
Pressure (psi)	Continuous	HMI	PIT/	PIT	PIT	PIT	PIT	PIT	PIT	PIT	PIT	PIT	PΠ ·	РП
			Col	lecte	d in S	CAD	A. Ca	n be	printe	ed as	daily	mont	hly re	port
Turbidity (NTV)	Continuous	Elec. Bldg.	AE1	AE1	AE1	AE1	AE1	AE1	AE1	AE1	AE1	AE1	AE1	AE
			Col	lecte	d in S	CAD	A. Ca	n be	print	ed as	daily	mont	hly re	port
WATER QUALITY FO	R PERFORM	ANCE MONI	TOR	ING	- NC	DN-R	EGI	JLAT	OR	Y				
SDI(field)	Weekly													
pH(field)	Weekly		t	t	t	t	t		t	t	t	t	t	t
A II P - N	late a bla									-				
Alkalinity	Weekly		Į
Aluminum	Weekly									 				
Barium	Weekly		
Calcium	Weekly									 				
Chloride	Weekly	
Iron, Total	Weekly									.			.	
Iron, Dissolved	Weekly	
Magnesium	Weekly		.	I	I		I	l	l	.		I	.	l
Silica	Weekly									I				
Sodium	Weekly		Ι							Ι	Ι			
Strontium	Weekly		1	[· · · · ·	[[l	[1	1	[[[
Sulfate	Weekly		t	T	T	1	T	T	T	T	t	T	[T
TDS	Weekly													
Ammonia	Weekly					_								
Fluoride	Weekly		+	ł	+	.	ł	
										 				
Manganese	Weekly		
Nitrate	Weekly									 			ļ	
Phosphate	Weekly	
Potassium	Weekly													
Calibration (Non-Rep	orting)	Maintain R	ecor	ds F	or 3	Yea	irs.							
	Required	. Location	Υ-	Υ-	۷.	Υ-	Υ-	۷.	۷.	۷.	Υ-	₩ - 1	Υ-	۲.
Level (Depth to wate	r)	PW	LT10	LT10	LT10	LT10	LT10	LT10	LT10	LT10	LT10	LT10	LT10	LT
TCEQ Required	Not Indicated	Date Calibrat	ed	Γ	Γ	Γ	Γ	Γ	Γ	T	T	Γ	Γ	T
Manufacturer Recom	Not Indicated	Date Calibrat	ed			l				1	1		l	l
			T	†	1	1	†		1	t	t	†	1	i
Flow (gpm)		Elec. Bldg.	FE1	FE10	FE1	FE10	FE10	FE1	FE1	FE1	FE1	FE10	FE10	FE
TCEQ Required	Once/3 years	Date Calibrat	ed	t	t	t	t	t	t	t	t	t	t	t
Manufacturer Recom	Not Indicated									l		·		
			T	t		t	t		t	t	t	t	t	t
							PIT	PIT	РП	РП	PIT	PIT	PIT	РП
Pressure (psi)		HMI	PIT/	PIT	PIT	PIT	I PII							ŧ
	Annually	HMI Date Calibrat		РΠ	РΠ	РП	1911	· · · ·	†*****	t	1	t	T	
Pressure (psi) TCEQ Required Manufacturer Recom	Annually Calc. Using Ma	Date Calibrat	ed	РП	РП	РП							[
TCEQ Required		Date Calibrat	ed	PIT	РП	РП								
TCEQ Required		Date Calibrat	ed I									AE1	(AE1	AE
TCEQ Required Manufacturer Recom		Date Calibrat Date Calibrat	ed ed AE1	РП AE1								AE1	AE1	AE

- Production Wells
- Combined Raw Water
- RO Feed
- Total Permeate
 - Skids I through 4
 - 2 Concentrators
- Combined RO Permeate
- Combined RO Concentrate
- Calcite Contactors
 - Individual & Combined Effluent
- Degasifier
- Chlorine Contact Tank
- Finished Water
- Injection Wells &
- Chemicals

Page 45

Startup: WQ Data

WQ MONITORING REQUIREME	INTS BASED ON MEN	<mark>IBANE USE C</mark> I	HECKLIST - USED	TO OBTAIN TCEQ	APPROVALS					
	18 Combined Paul									
				Combined Raw						
			USEPA /	Water before	Combined	Finished Water				
			Standard	Chemical	Permeate	18 Oct 2016				
			Methods	Addition	18 Oct 2016	18 0(1 2010				
Parameter	Units		Test Method	18 Oct 2016						
Maximum Contamina	nt Level (MCL)	MCL								
Nitrate	mg/l as N	10	300	ND	ND	ND				
Nitrite	mg/l as N	1	300	ND	ND	ND				
Arsenic	micro g/l	10	200.8	ND	ND	ND				
Fluoride	mg/l	4	SM4500F-C	0.22	ND	ND				
Secondary Contamina	ant Level (SCL)	SCL								
Aluminum	mg/l	0.2	200.8	ND	ND	ND				
Copper	mg/l	1	200.8	ND	ND	ND				
Lead (Action Level)	mg/l	0.015	200.8	ND	ND	ND				
Iron	mg/l	0.3	200.7	0.23	ND	ND				
Manganese	mg/l	0.05	200.8	58	ND	ND				
Zinc	mg/l	5	200.8	ND	ND	ND				
Total Dissolved Solids	mg/l	1000	160.1	1200	33	86				
Fluoride	mg/l	2	SM4500F-C	0.22	ND	ND				
Sulfate	mg/l	300	300	480	9.3	2.9				
Chloride	mg/l	300	300	240	2	10				
pH		>= 7	SM4500-HB	8.1	6.5	9.6				
Corrosive Water P	arameters									
Alkalinity	mg/l		SM 2320B	210	12	40				
Calcium	mg/l		200.7	34	ND	5.8				
Sodium	mg/l		200.7	370	13	21				
	1. The P									
Radiological Analy	yses (MCL)	MCL								
Gross alpha	pCi/L	15	900	1.3	3.2	ND				
Radium 226	pCi/L	5	900	ND	ND	ND				
Radium 228	pCi/L	5	904	ND	ND	ND				
Beta particle	pCi/L	50	900	6.7	ND	ND				
Uranium	micro g/L	30	200.8	ND	ND	ND				

RDT: Experiences

- Reliability Demonstration Testing was Required to Demonstrate the Plant Operated as Designed and Intended.
- Testing Duration 30 Days of Continuous Operation
- Water Quality Data Collection
 - Safety (Public Health)
 - Operation & Performance Monitoring

MAKING SAN ANTONIO WATERFUL

RDT: Trends

Key Trends-Flow Recovery Conductivity Diff. Pressure

12/16/16

11/30/16

11/30/16

12/16/16

12/31/16

12/31/16

Commissioning: Experiences

- Commissioning Phase (90 Day Duration)
 - -Routine was Established
 - TCEQ Monthly Operating Reports
 - Process Monitoring Reports
 - SCADA Reports
 - Zachry Parsons Operators and Staff
 - Training SAWS Operators Simultaneously

MAKING SAN ANTONIO WATERFUI

Commissioning: TCEQ Reporting

Sample Form

Injection Well Monitoring Report

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY 6300 Ocean Drive
Suite 1200
Corpus Christi, Taxas. 78412

QUARTERLY INJECTION REPORT

San Antonio Water System Brackish Groundwater Desalination Project 4588 Hardy Road Elmendorf, TX 78112 Attn: Mr. Kevin Morrison

MEXTS DAY

Report for WDWG010001

Quarter 1, 201X

Parameter (Permit Limit)	January (1)	No. Esc.	February (2)	No. Esc.	March (3)	No. Exc
Hours Operated Per Month						
Average Flow Rate_(No permitted limit)						
Total Volume For Month (24.33 MGM)						
Total Volume For Vere-(292.0 MG)						
Total Volume For Month For Facility (121.67 MGM)						
Total Volume Far Year For Facility (1460.0 MG)						
Injection Rate Max. (1000 GPM instantaneous)						
Facility Monthly Injection Rate Ave. (500 GPM)						
Injection Pressure Manimum (775 PSI)						
Annulus Differential Pressure, Minimum (100 PSI)						
pH Minimum (>7.0)						
pH Maximum (<7.5)						
Specific Gravity Maximum (1.02 @ 60°F)						

I CERTIFY THAT I AM FAMILIAE WITH THE INFORMATION CONTAINED IN THIS REPORT AND THAT TO THE EEST OF MY KNOWLEDGE AND GELIEF SUCH INFORMATION IS TRUE AND COMPLETE AND ACCURATE.						ICE BOTTOM OF FASE 1-TON ASSKEVIATIONS AND DEFINITIONS								
		T		NCX.	5.202			COMPANY LEFT	EIENTLITIVE			247		

FROM NAME

Operations, Performance, and Growth

Roberto Macias

Manager, Production and Treatment Operations, SAWS

Operational Challenges Silica and Iron

- Due to higher design recovery, both Iron and Silica were concerns from initial well data
- More than 50% of iron is maintained in dissolved form
- Cause of partial iron oxidation (measured at well) is uncertain
 - Low amounts of DO are present in raw water at the wellhead
 - ORP is consistently negative (-150 to -200 mV)
 - No clear correlation between oxidized iron, DO, and ORP
- Well operational pre-flushing is necessary
- Well pump speed control philosophy has proved to provide stable and reliable control
- Raw water entering the WTP maintains a negative ORP

Page 53

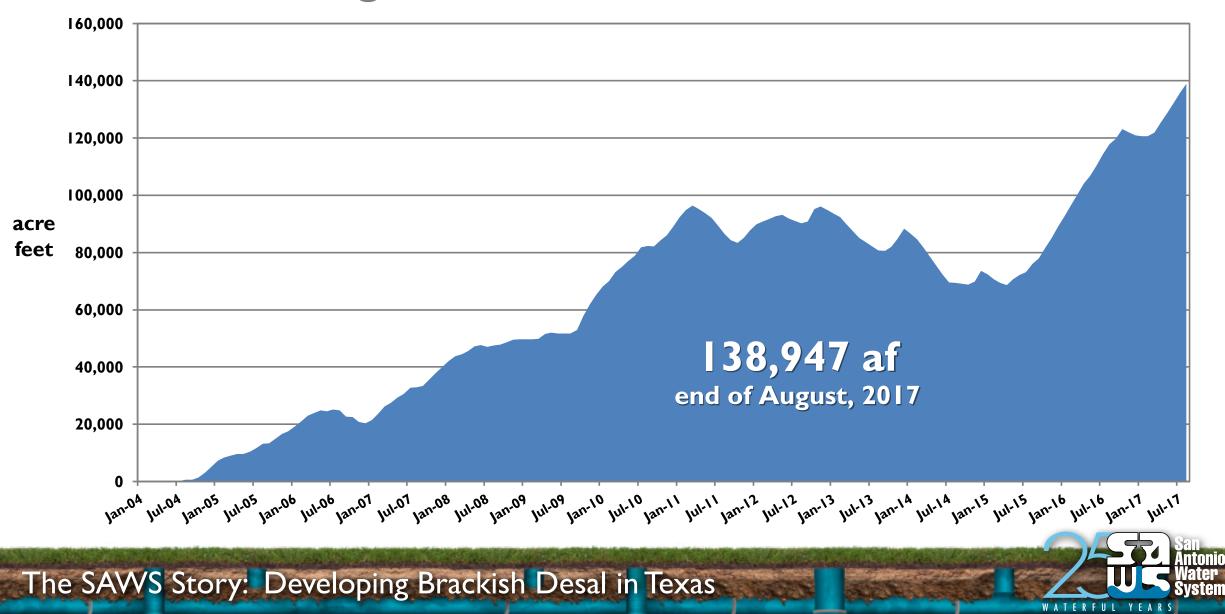
Operational Challenges SDI (Silt Density Index)

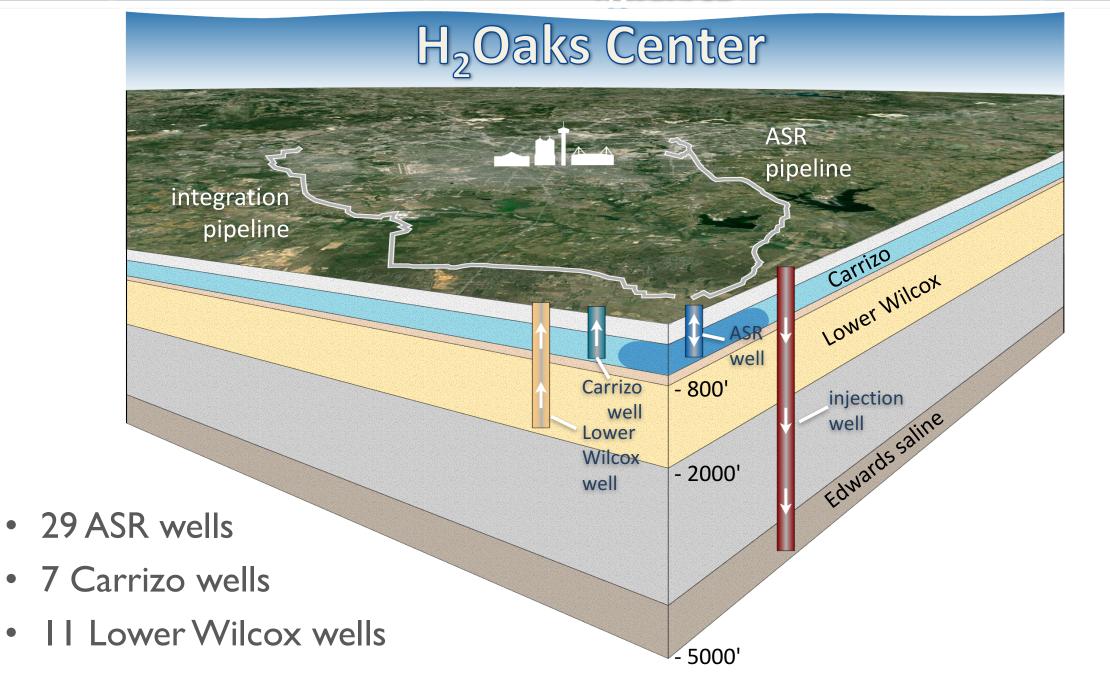
- Overall raw water quality (SDI and turbidity) appears to be improving over time, however:
 - Some wells continue to produce higher turbidity and SDI despite redevelopment flushing
 - A few wells have been observed to "burp up" turbidity from time to time
- SAWS is continuing to monitor supply well quality
 - Suspended: Rossum sand tests, SDI, and Turbidity
 - Dissolved oxygen, ORP, and dissolved and total iron

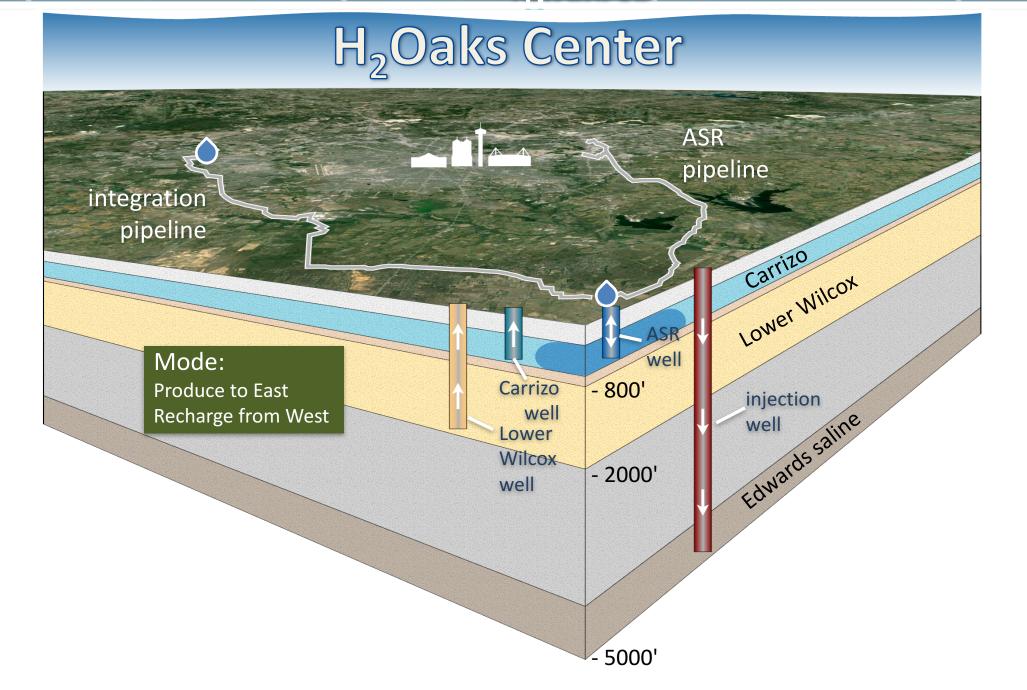
Operational Challenges

- Improper Well and Raw Conveyance Flushing
 - Well flushing timers were reduced to expedite I&C functional testing (prior to membrane loading) resulted in high SDI and rapid fouling of cartridge filters at WTP
 - Suspended solids would quickly settle out in the conveyance pipeline if pre-flush was not performed, later to be pushed into the WTP at higher operating flows
- Design considerations of pre-flush at each well have proven to be a good preventive measure
- Design included permanent features to flush raw conveyance pipelines
- Water quality becomes stable at steady state conditions

Carrizo Aquifer Treatment Facility

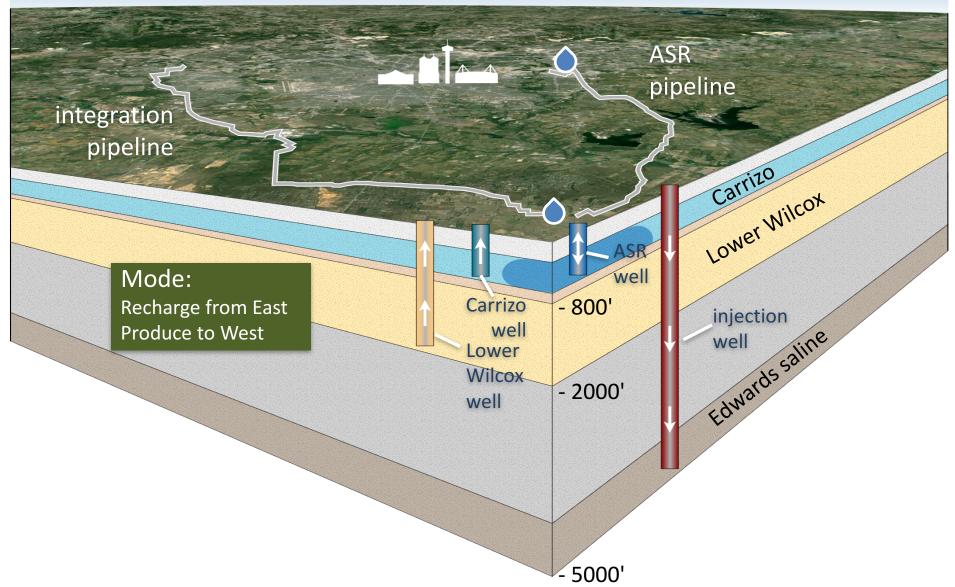


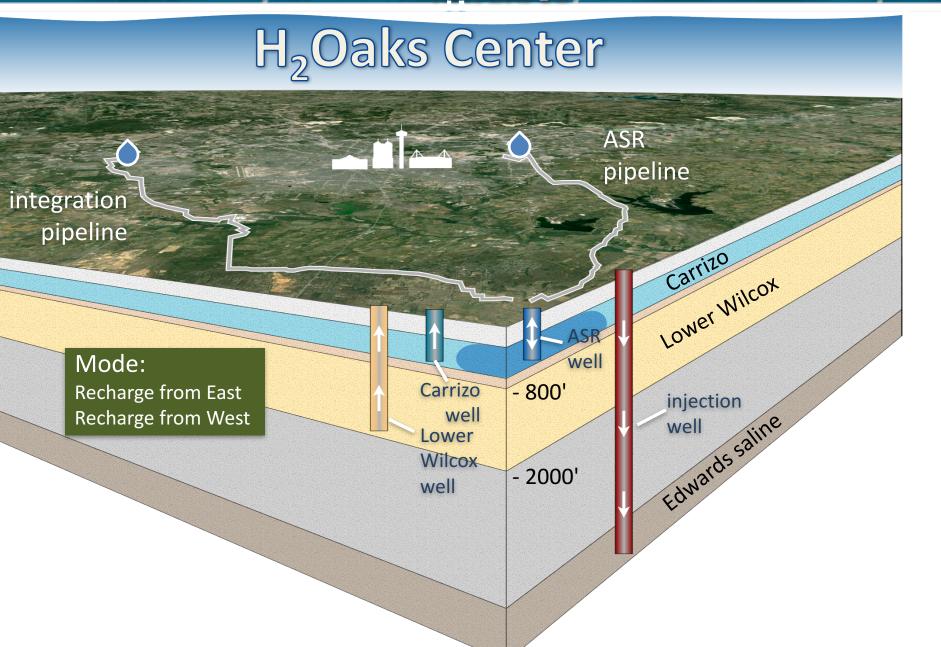


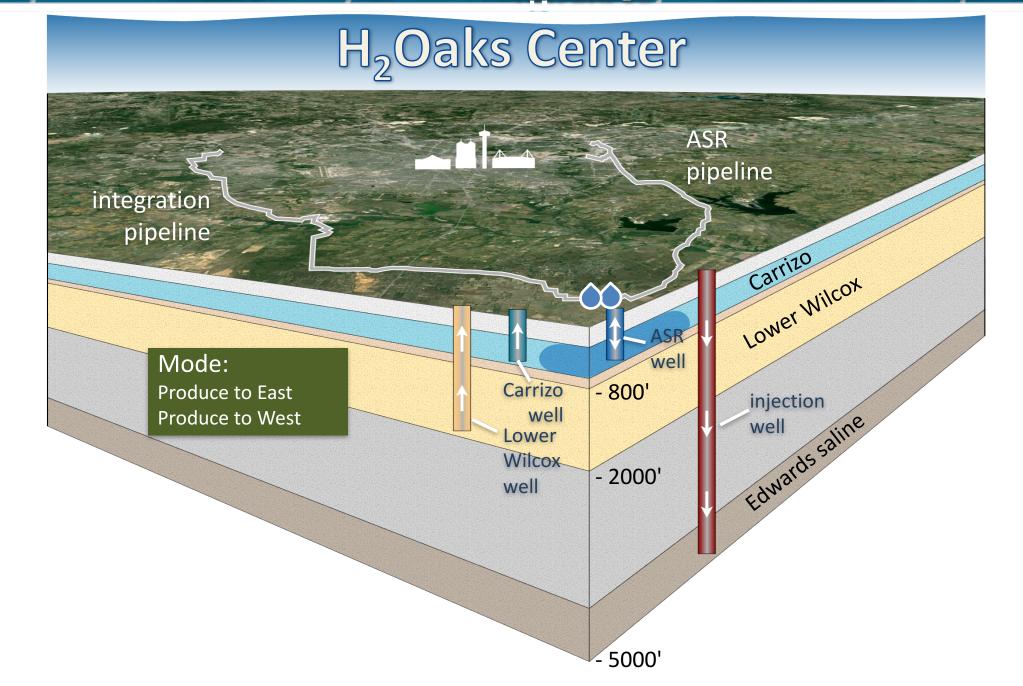

Water in Storage

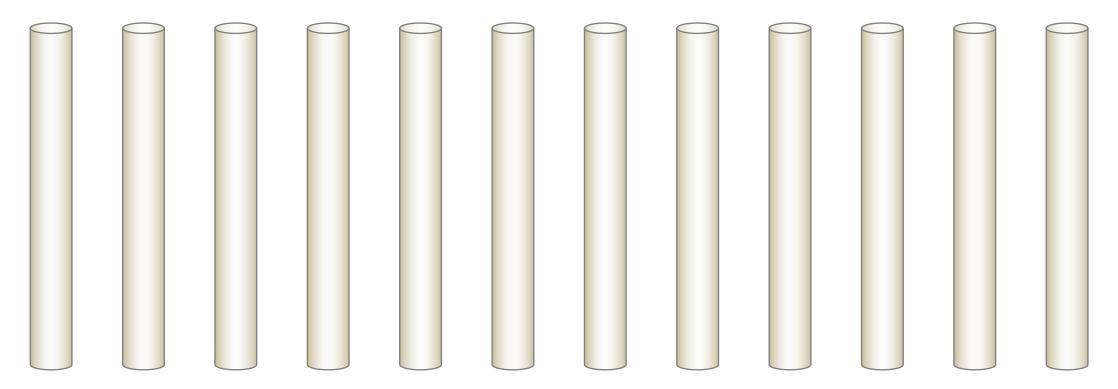
Page 57

Water In Storage



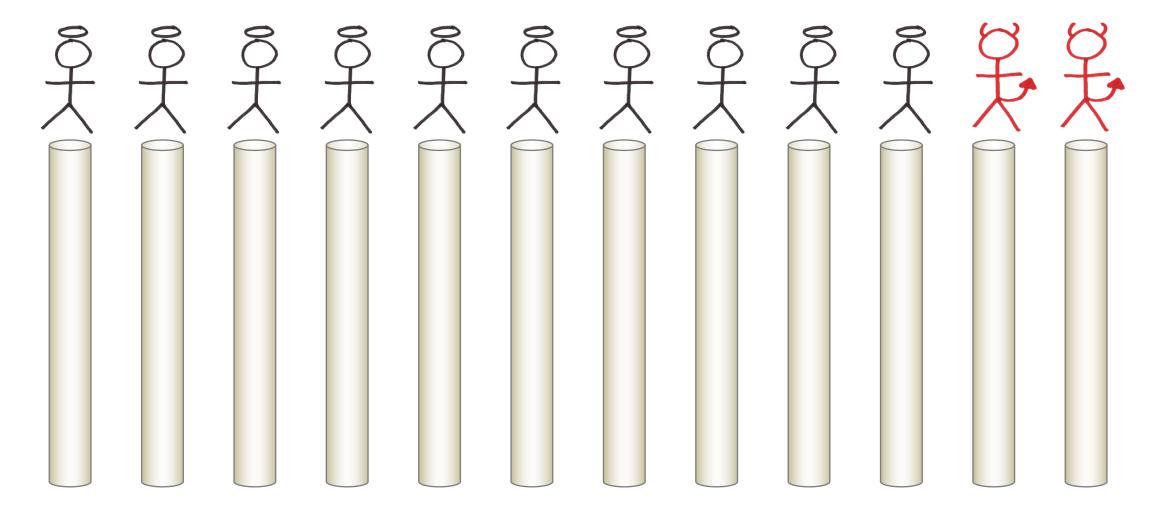






5000'

Page 61



12 Wells: It's Like 12 Children

12 Wells: It's Like 12 Children

Questions?

The SAWS Story: Developing Brackish Desal in Texas

Duane Bryant, P. E. Project Engineer, Desalination and Integration, SAVVS Saqib Shriraz, P. E. PMP Project Manager, Desalination and Integration, SAVVS Praveen Krishna, P. E. Senior Engineer, Parsons Roberto Macias Manager, Production and Treatment Operations, SAVVS

Texas Desal 2017 September 20, 2017

WATERF