

www.petroh2o.com

COPYRIGHT © 2018 BY PHR RODI LLC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED, DISTRIBUTED, OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, INCLUDING PHOTOCOPYING, RECORDING, OR OTHER ELECTRONIC OR MECHANICAL METHODS, WITHOUT THE PRIOR WRITTEN PERMISSION OF THE PUBLISHER, EXCEPT IN THE CASE OF BRIEF QUOTATIONS EMBODIED IN CRITICAL REVIEWS AND CERTAIN OTHER NONCOMMERCIAL USES PERMITTED BY COPYRIGHT LAW. FOR PERMISSION REQUESTS, WRITE TO THE PUBLISHER, ADDRESSED "ATTENTION: PERMISSIONS COORDINATOR," AT 2600 E. SOUTHLAKE BLVD. SUITE 120387, SOUTHLAKE, TEXAS 76092.

Non-Thermal ZLD

NOT Forward Osmosis

U.S. Patent Pending

Why Aquafortus in O&G?

One Basin Example

10 bbls of Water for Every bbl Oil

Another Basin Example 3mmbbl/d in oil, but 16mmbbl/d in water

Permian Oil and Water Production

About Aquafortus

One minute video-See link

https://petroh2o.com/news

Tech Comparison

	HIGH CONCENTRATION PLATFORMS			
	Evaporator	Crystallizer	Competing FO	Aquafortus
Energy-use (kwhr/m³)	45	90	90	10
Concentration (mg/I TDS)	250k	∞ Salt crystals	300k	∞ Salt crystals
Process Complexity	Simple	Simple	Complex	Simple
OPEX p.a. (per MGD capacity)	\$3.08M	\$4.45M	No data - nascent company	\$2.0M
CAPEX (per MGD capacity)	\$9.2M	\$19.6M	No data - nascent company	\$7.5M

Ref: Dr Michael Mickley, Survey of High-Recovery and Zero Liquid Discharge Technologies for Water Utilities, (Watereuse Foundation, 2008). Basu, The Dawn of Membrane Forward Osmosis: A Tiny Industry Targeting Multi-billion-dollar Markets.

Current Status

aquafortus[™]-NTR Maximum Non-Thermal Recovery

TRL	Description	
One	The idea Basic principles have been observed. Research begins into potential applications	
Two	Invention begins Technology concept is formulated. Speculative, practical applications suggested	
Three	Active R&D is initiated Analytical studies and experiments validate critical functions and/or components	
Four	Components validated in laboratory Basic technological components are integrated to establish that they work together	
Five	Components validated in relevant environment Basic technological components are integrated and tested in a simulated environment	
Six	Advanced prototype tested in relevant environment More advanced system model or prototype demonstrated in a simulated environment	
Seven	Advanced prototype tested in operational environment Advanced field-testing of the actual system prototype in an operational environment.	
Eight	Completed technology proven through test and demonstration Technology completed and qualified in its final form and under expected conditions	
Nine	Completed technology proven through successful commercial operations Actual application of the technology in its final form and under normal conditions	

9

THANK YOU

www.petroh2o.com

COPYRIGHT © 2018 BY PHR RODI LLC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED, DISTRIBUTED, OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, INCLUDING PHOTOCOPYING, RECORDING, OR OTHER ELECTRONIC OR MECHANICAL METHODS, WITHOUT THE PRIOR WRITTEN PERMISSION OF THE PUBLISHER, EXCEPT IN THE CASE OF BRIEF QUOTATIONS EMBODIED IN CRITICAL REVIEWS AND CERTAIN OTHER NONCOMMERCIAL USES PERMITTED BY COPYRIGHT LAW. FOR PERMISSION REQUESTS, WRITE TO THE PUBLISHER, ADDRESSED "ATTENTION: PERMISSIONS COORDINATOR," AT 2600 E. SOUTHLAKE BLVD. SUITE 120387, SOUTHLAKE, TEXAS 76092.

