Omya Advanced Remineralization Process

Jarrod Massam – Director of Market Development & Innovation
OMYA ADVANCED REMINERALIZATION PROCESS

Properties of Desalination Permeate

- 85 – 99 % of dissolved ions rejected
- Low pH (pH 4-6.5)
- Lacking in Alkalinity – minimal buffer capacity
- Low in mineral content (Ca$^{2+}$ and Mg$^{2+}$)
- Acidic and aggressive
Need for Remineralization

- Corrosion of water infrastructure:
 - $500 billion over 25 years (AWWA 2012)

- Release of toxic ions
 - Heavy metals (Cu$^{2+}$, Pb$^{2+}$, Cd$^{2+}$, Cr$^{2+}$)
 - ‘Red water’ incidents (Fe$^{3+}$)
 - Flint, Michigan – Lead poisoning

- Health
 - Consumption leads to elimination of important ions
 - Dental
 - Reduction in intake of essential minerals (Ca$^{2+}$, Mg$^{2+}$)
Drawbacks of Current Processes

<table>
<thead>
<tr>
<th>Direct Chemical Dosing</th>
<th>Lime Dosing</th>
<th>Calcite Contactors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium Chloride (CaCl₂)</td>
<td>Lime (Ca(OH₂))</td>
<td>Calcium carbonate chips (CaCO₃)</td>
</tr>
<tr>
<td>Sodium Bicarbonate (NaHCO₃)</td>
<td>Carbon Dioxide (CO₂)</td>
<td>Carbon Dioxide (CO₂)</td>
</tr>
<tr>
<td>High operating cost</td>
<td>High cost</td>
<td>Slow reaction kinetics</td>
</tr>
<tr>
<td>Unwanted counter ions</td>
<td>Waste by-product</td>
<td>Poor CO₂ efficiency</td>
</tr>
<tr>
<td>Focused on LSI</td>
<td>No Carbonate</td>
<td>Large plant footprint</td>
</tr>
<tr>
<td>Difficult to maintain stability</td>
<td>Difficult to maintain stability</td>
<td></td>
</tr>
</tbody>
</table>

Direct Chemical Dosing

- **Calcium Chloride (CaCl₂):**
 - High operating cost
 - Unwanted counter ions
 - Focused on LSI
 - Difficult to maintain stability

- **Sodium Bicarbonate (NaHCO₃):**
 - High operating cost
 - Unwanted counter ions
 - Focused on LSI
 - Difficult to maintain stability

Lime Dosing

- **Lime (Ca(OH₂)):**
 - High cost
 - Waste by-product
 - No Carbonate
 - Difficult to maintain stability

Calcite Contactors

- **Calcium carbonate chips (CaCO₃):**
 - Slow reaction kinetics
 - Poor CO₂ efficiency
 - Large plant footprint
OMYA ADVANCED REMINERALIZATION PROCESS

Remineralization Process Development

- World leader in industrial minerals
- Providing (re)mineralization products and solutions for over 40 years
- Supply granular calcium carbonate and dolomite products in Middle East, North America.
- Process development driven by product and engineering expertise
- Solution = Omya Advanced Remineralization Process
OMYA ADVANCED REMINERALIZATION PROCESS

Innovative New Remineralization Process

OMYAqua

Desalinated Water Permeate / Distillate

Omya Advanced Remineralization Process

Membrane Calcite Reactor

Ca\((\text{HCO}_3^-)\)_2 solution

Omyalime pH adjustment

\[\text{CaCO}_3 + \text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{Ca}^{2+} + 2 \text{HCO}_3^- \]
Advantages of OARP

- Reduced plant footprint
- Reduced CAPEX
- Reduced OPEX
- Modular design
- High CO₂ efficiency
- Turbidity free water